Please wait a minute...
大学物理实验, 2024, 37(1): 31-36     https://doi.org/10.14139/j.cnki.cn22-1228.2024.01.007
  本期目录 | 过刊浏览 | 高级检索 |
双光源干涉法测量液态薄膜厚度
刘维慧 1 ,梁润泽 2 ,赵泉昕 1 ,卓朝博 1 ,苗永平 1*
1.山东科技大学 电子信息工程学院,山东 青岛 266510;2.山东大学 晶体材料国家重点实验室新一代半导体材料研究院,山东 济南 250100
Research on the Technology of Liquid Film Thickness Measurement Based on Optical Interferometry
LIU Weihui 1 ,LIANG Runze 2 ,ZHAO Quanxin 1 ,ZHUO Chaobo 1 ,MIAO Yongping 1*
下载:  PDF (3744KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

以迈克尔逊干涉仪为核心设备搭建实验系统,提出双光源光学干涉条纹的调试方案,引入基于 Python 的图像处理技术,分析基准图样与调节图样的重合度判断调节边界,实现薄膜厚度的精确测量。以肥皂膜为样品进行了实验,结果表明该实验方案具有良好的可操作性和可重复性,较目视估算法提升了测量精度,为无损测量液态薄膜厚度提供了解决方案,也可引入大学物理实验课程,提升学生研究创新能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘维慧
梁润泽
赵泉昕
卓朝博
苗永平
关键词:  光学干涉法  液态薄膜  迈克尔逊干涉仪  图像处理     
Abstract: 

The experimental system is built with the Michelson interferometer as the core equipment,and the debugging scheme of double light source optical interference fringes is proposed. The image processing technology based on Python is introduced to analyze the coincidence degree between the reference pattern and the adjustment pattern to judge the adjustment boundary,which realizes the accurate measurement of film thickness. Experiments were conducted using soap film as a sample,and the results showed that the experimental scheme had good operability and repeatability,improved measurement accuracy compared to visual estimation algorithms,and provided a solution for non-destructive measurement of liquid film thickness.It can also be introduced into university physics experiments to enhance students’research and innovation

abilities.

Key words:  optical interferometry    liquid thin film    Michelson interferometer    image processing
               出版日期:  2024-02-25      发布日期:  2024-02-25      整期出版日期:  2024-02-25
ZTFLH:  O 4-33  
引用本文:    
刘维慧 , 梁润泽 , 赵泉昕 , 卓朝博 , 苗永平 . 双光源干涉法测量液态薄膜厚度 [J]. 大学物理实验, 2024, 37(1): 31-36.
LIU Weihui, LIANG Runze , ZHAO Quanxin , ZHUO Chaobo , MIAO Yongping. Research on the Technology of Liquid Film Thickness Measurement Based on Optical Interferometry . Physical Experiment of College, 2024, 37(1): 31-36.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2024.01.007  或          http://dawushiyan.jlict.edu.cn/CN/Y2024/V37/I1/31
[1] 张斯博, 姜思言, 顾吉林 . 基于改进的迈克尔逊干涉仪的液体折射率测量方法研究 [J]. 大学物理实验, 2023, 36(6): 63-68.
[2] 张晓冬 , 石 开, 欧阳凯南, 李恒权, 汪国庆, 吴鑫鹏. 改进型迈克尔逊干涉仪测量溶液折射率 [J]. 大学物理实验, 2023, 36(6): 59-62.
[3] 张佳怡 , 高泽同 , 樊小维 , 王 拴 , 韩建卫 , 钟 瑞 , 过 聪 . 迈克尔逊干涉仪测量液体浓度装置的创新研究 [J]. 大学物理实验, 2023, 36(5): 66-71.
[4] 谢鑫鑫 , 赖盛英, 王慧琴 , 闫 然 , 樊伟征 . 利用梯形液膜干涉法实现液体浓度的自动检测 [J]. 大学物理实验, 2023, 36(4): 10-16.
[5] 向 倩, 丁益民 , 李 政, 杨翔宇. 基于滴定法探究溶液浓度与折射率的关系 [J]. 大学物理实验, 2023, 36(1): 23-28.
[6] 罗天娇 , 吴幸锴 , 孙微微 , 侯丽华 . 基于Matlab的迈克尔逊微小位移测量 [J]. 大学物理实验, 2022, 35(5): 96-99.
[7] 邓 莉, 孙 可 , 刘金梅, 吴平颐 , 景培书, 刘梓谊 , 李成渊. Unity 内嵌 Matlab 子程序实现迈克尔逊干涉仪虚拟仿真实验中的干涉动态演示 [J]. 大学物理实验, 2022, 35(3): 124-130.
[8] 陈水桥, 蔡 力 , 陈 丰, 陈志博 , 苏婷琳, 颜 欣 , 张作成. 液晶空间光调节杨氏双缝干涉法透明介质折射率的优化测量 [J]. 大学物理实验, 2022, 35(3): 41-46.
[9] 袁浩洋, 谈 浩 , 李英豪, 谌 利 , 朱丽颖, 刘 泉, 邓海游 , 刘宁亮, 易伟松 . 基于迈克尔逊干涉仪和智能手机定量测量溶液折射率 [J]. 大学物理实验, 2022, 35(3): 94-98.
[10] 杜兴鹏, 陈垲全, 刘汉子, 朱浩天, 陈子阳. 基于改进型迈克尔逊干涉仪的定量相位显微技术 [J]. 大学物理实验, 2022, 35(3): 71-74.
[11] 曹雨淅, 吴相龙, 陈 凯, 罗 浩. 基于单片机技术的迈克尔逊干涉仪热膨胀系数自动测量处理系统 [J]. 大学物理实验, 2022, 35(2): 94-96.
[12] 张 磊, 张鸿鑫, 叶力文, 吕思雨. 基于 VirtualLab Fusion 的迈克尔逊干涉仪仿真教学与拓展 [J]. 大学物理实验, 2022, 35(1): 83-88.
[13] 罗松杰, 王孝艳. 利用迈克尔逊干涉仪测量物体表面形貌 [J]. 大学物理实验, 2022, 35(1): 79-82.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed