利用梯形液膜干涉法实现液体浓度的自动检测
谢鑫鑫 1 ,赖盛英 2* ,王慧琴 2 ,闫然 2 ,樊伟征 2
1 上海工程技术大学 电子电气工程学院,上海 201620;2.上海工程技术大学 数理与统计学院,上海 201620
Automatic Measurement of Liquid Concentration by Transmission Interferometry
XIE Xinxin 1 ,LAI Shengying 2* ,WANG Huiqin 2 ,YAN Ran 2 ,FAN Weizheng 2
摘要
基于折射定律和等厚干涉原理设计了利用梯形液膜干涉法实现液体浓度的自动检测实验,通过 AutoCAD 软件测量和基于 OpenCV-Python 图像处理技术两种测量手段,对比计算空气环境和液体环境下干涉条纹尺寸,得到液体折射率,再定标其浓度值。以酒精溶液为例,采用自制微型梯形玻璃容器、透镜、毛玻璃、烧杯、量筒、激光器、电脑和 CCD 相机等仪器进行测量,即可得到液体浓度。通过实验表明,实验结果与经验公式吻合,两种测量手段各有优势,具有一定的推广价值。
关键词:
液体浓度
透射干涉
AutoCAD 软件测量
OpenCV-Python 图像处理
自动检测
Abstract:
Based on the empirical formula of liquid concentration and refractive index at room temperature,the home experiment of liquid concentration measurement by transmission interferometry is designed. With the principle of wedge equal thickness interference,the size of interference fringes in air and liquid is calculated,respectively.Then the liquid refractive index is calculated by the ratio of the stripe intervals in air and in liquid.In the experiment,self-made trapezoidal glassware,lens,thin paper,beaker,measuring cylinder,semiconductor laser pen,computer and CCD camera are used.The liquid concentration can be measured by equal thickness interferometry.The experiment shows that the experimental results are consistent with the empirical formula,and the experiment can be used as a supplement to the online experimental teaching project.
Key words:
liquid concentration
transmission interferometry
AutoCAD software measurement
OpenCV-Python image processing
automatic detection
发布日期: 2023-08-25
引用本文:
谢鑫鑫 , 赖盛英, 王慧琴 , 闫 然 , 樊伟征 .
利用梯形液膜干涉法实现液体浓度的自动检测
[J]. 大学物理实验, 2023, 36(4): 10-16.
XIE Xinxin , LAI Shengying , WANG Huiqin, YAN Ran , FAN Weizheng .
Automatic Measurement of Liquid Concentration by Transmission Interferometry
. Physical Experiment of College, 2023, 36(4): 10-16.
链接本文:
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2023.04.003
或
http://dawushiyan.jlict.edu.cn/CN/Y2023/V36/I4/10
[1]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[2]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[3]
WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing.
Theoretical and Experimental Research of A zimuthal-Radial Pendulum
[J]. Physical Experiment of College, 2020, 33(1): 1
-6
.
[4]
LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling
[J]. Physical Experiment of College, 2020, 33(1): 7
-9
.
[5]
DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi.
MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system
[J]. Physical Experiment of College, 2020, 33(1): 10
-16
.
[6]
MA Kun.
Experiment Study on the Measuring Young' s Modulus by Stretching
[J]. Physical Experiment of College, 2020, 33(1): 17
-20
.
[7]
FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou.
Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison
[J]. Physical Experiment of College, 2020, 33(1): 21
-24
.
[8]
LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli.
A New Method for Simple and Rapid Measurement of Refractive Index
[J]. Physical Experiment of College, 2020, 33(1): 25
-28
.
[9]
WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng.
Progress and Applications of Electron Spin Resonance in Biology
[J]. Physical Experiment of College, 2020, 33(1): 29
-33
.
[10]
CHEN Yingmo, SHEN Siyi, WANG Jie.
Study on the Characteristics of Silicon Photocells
[J]. Physical Experiment of College, 2020, 33(1): 34
-36
.
Viewed
Full text
Abstract
Cited
Shared
Discussed