Please wait a minute...
大学物理实验, 2023, 36(5): 57-60     https://doi.org/10.14139/j.cnki.cn22-1228.2023.05.013
  本期目录 | 过刊浏览 | 高级检索 |
基于熊猫型保偏微光纤传感测量的实验教学研究
李宏韬 1*,吕亮 1 ,孙火姣 2
1.安徽大学 物理与光电工程学院,安徽 合肥 230601;2.皖西学院 电气与光电工程学院,安徽 六安 237012
Experimental Teaching Research on Sensing Measurement Based on Panda Polarization-maintaining Optical Microfiber
LI Hongtao 1* ,LÜ Liang 1 ,SUN Huojiao 2
下载:  PDF (1686KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

在传统的大学物理实验教学中,基于双光束干涉原理的干涉仪一般是基于空间光结构所搭建的。因而此类干涉仪的不仅制作成本较高,而且光路中光功率的损失较大,使得此类干涉仪在本科教学过程中较难维护。然而基于本文所报道的熊猫型保偏微光纤干涉仪具有体积小、稳定性好、较高的折射率灵敏度为 1631 nm/RIU、较高的温度灵敏度为 -0.99nm/℃和较高的测量精度等优点,更加适合在本科教学中进行开展。同时,学生通过对微光纤器件进行制作与测试实验,不仅可以提升学生的动手能力,激发学生对相关课题的学习兴趣,还能够为今后开展有关的新型光纤器件及其新传感应用的实验教学研究打下坚实的基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李宏韬
吕 亮
孙火姣
关键词:  干涉仪  熊猫型保偏微光纤  传感器     
Abstract: 

In conventional experimental teaching college physics,the interferometers operated with two-beam interference principle were constructed based on the spatial light structure.Due to the high cost and high losses in optical power of the interferometers,it is difficult to preserve them during the college teaching process.However,the panda polarization-maintaining optical microfiber interferometers have the merits of compact size,high stability and high refractive index sensitivity of 1 631 nm/RIU,high temperature sensitivity of -0.99nm/℃,and high measurement accuracy,they can be more suitable for applying in college teaching.Moreover,by fabricating the optical microfiber device and performing the measuring experiments,the operational ability of students can be improved,and the students’project learning interests can also be excited.It can also lay a solid foundation for the further experimental teaching research of novel optical fiber devices and their novel sensing applications.

Key words:  interferometers    panda polarization-maintaining optical microfiber    sensor
                    发布日期:  2023-10-25     
ZTFLH:  O 436  
引用本文:    
李宏韬 , 吕 亮 , 孙火姣 . 基于熊猫型保偏微光纤传感测量的实验教学研究 [J]. 大学物理实验, 2023, 36(5): 57-60.
LI Hongtao, LÜ Liang , SUN Huojiao . Experimental Teaching Research on Sensing Measurement Based on Panda Polarization-maintaining Optical Microfiber . Physical Experiment of College, 2023, 36(5): 57-60.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2023.05.013  或          http://dawushiyan.jlict.edu.cn/CN/Y2023/V36/I5/57
[1] 张佳怡 , 高泽同 , 樊小维 , 王 拴 , 韩建卫 , 钟 瑞 , 过 聪 . 迈克尔逊干涉仪测量液体浓度装置的创新研究 [J]. 大学物理实验, 2023, 36(5): 66-71.
[2] 唐绪兵, 汪文明, 杜逐波, 杨祥林, 孙 云. 金属电阻温度系数测定的实验技术改进 [J]. 大学物理实验, 2023, 36(5): 53-56.
[3] 吴学兵, 蔡 彦 , 杨海燕. 不同泥沙含量河水的表面张力系数测定 [J]. 大学物理实验, 2023, 36(5): 20-23.
[4] 尚玉峰. 非等振幅高斯光束干涉研究 [J]. 大学物理实验, 2023, 36(4): 41-46.
[5] 王丽君, 郑亚玉, 张 瑛 , 林二妹. 液体黏滞系数测量方法的改进与研究 [J]. 大学物理实验, 2023, 36(3): 36-39.
[6] 姚懿能 , 王 娜 , 张 红 , 梁春恬 , 薛 贺 , 范雄哲 , 史丁元 . 基于智能手机加速度和速度传感器刚体转动惯量的测量 [J]. 大学物理实验, 2023, 36(2): 123-126.
[7] 向 倩, 丁益民 , 李 政, 杨翔宇. 基于滴定法探究溶液浓度与折射率的关系 [J]. 大学物理实验, 2023, 36(1): 23-28.
[8] 邢 岩, 和晓晓, 何学敏, 李兴鳌. 新工科背景下应用导向的迈克尔逊干涉模拟 [J]. 大学物理实验, 2022, 35(6): 156-160.
[9] 郭俊伟, 王忠民, 时术华, 贺长伟 . 基于智能传感器的弹性模量测量方法 [J]. 大学物理实验, 2022, 35(6): 31-34.
[10] 杨祎图 , 邓招华 , 杨 琴 , 冯 洁 , 刘应开 . 基于智能手机的均质圆弧微振动研究 [J]. 大学物理实验, 2022, 35(6): 79-84.
[11] 张晓冬, 冯学超, 杨 坤, 石 开, 王多尧, 李帅鹏. 空气比热容比测量装置的改进 [J]. 大学物理实验, 2022, 35(5): 77-80.
[12] 黄 林, 丁晓夏 , 唐一文. 基于LabVIEW和PASCO传感器的多普勒测速实验 [J]. 大学物理实验, 2022, 35(5): 105-108.
[13] 杨亮亮, 李 婧. 测量转速的三种传感器输出性能的研究 [J]. 大学物理实验, 2022, 35(4): 24-26.
[14] 毛爱华 , 蔡禄 , 李丽荣 , 孙一博. 基于逐差法推算液体表面张力系数的不确定度 [J]. 大学物理实验, 2022, 35(4): 108-110.
[15] 郜洪云, 陈 哲, 黎 敏. 多模-单模结构光纤表面等离子体共振传感实验 [J]. 大学物理实验, 2022, 35(4): 20-23.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed