Please wait a minute...
大学物理实验, 2022, 35(6): 156-160     https://doi.org/10.14139/j.cnki.cn22-1228.2022.06.032
  本期目录 | 过刊浏览 | 高级检索 |
新工科背景下应用导向的迈克尔逊干涉模拟
邢 岩, 和晓晓, 何学敏, 李兴鳌 #br#
南京邮电大学 理学院,江苏 南京 210023
Application-Oriented Michelson Interference Simulation for New Engineering Education
XING Yan , HE Xiaoxiao, HE Xuemin, LI Xingao
下载:  PDF (2009KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

在新工科背景下,培养符合国家和社会需求的卓越工程科技人才具有重要意义。本文以干涉仪工程应用为研究背景,探索大学物理实验课程迈克尔逊干涉实验的教学方法,选取白光作为光源,结合干涉的光学原理和干涉条纹可见度理论,分析了白光迈克尔逊干涉的实验原理,利用 Matlab 仿真模拟实现了白光迈克尔逊干涉图像可视化。基于此,利用白光干涉的超精度分辨,模拟干涉仪对精细表面形貌信息的提取过程,进而解析白光干涉仪的工作原理,为学生搭建课堂学习与工程应用的桥梁。该模拟仿真实验可辅助迈克尔逊干涉实验的可视化教学,推动以应用和需求为导向的大学物理实验课程改革。


服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢 岩
和晓晓
何学敏
李兴鳌
关键词:  迈克尔逊干涉  白光干涉仪  模拟仿真  新工科     
Abstract: 

Under the background of new engineering,it is of great significance to cultivate outstanding engineering and technological talents. According to the application of white light interferometer,this work explores the new teaching method by taking the Michelson interference experiment in the college physics experiment course as a sample.The white light is selected as the light source,and the principles of white light Michelson interference are deduced by combining the optical interference principle and the visibility theory of interference fringes.Simulated by Matlab,the intuitive visualization images of white light Michelson interference are obtained.Based on this,the white light interference with super-precision resolution is used to extract the topographical information of the fine surface,just like the working mode of a white light interferometer.This simulation experiment can not only assist the visual teaching of the Michelson interference experiment but also build a link between the class and practice for students,promoting the reform of the application-oriented college physics experiment curriculum.


Key words:  Michelson interference    white light interferometer    simulation    new engineering
               出版日期:  2022-12-25      发布日期:  2022-12-25      整期出版日期:  2022-12-25
ZTFLH:  O 4-39  
引用本文:    
邢 岩, 和晓晓, 何学敏, 李兴鳌. 新工科背景下应用导向的迈克尔逊干涉模拟 [J]. 大学物理实验, 2022, 35(6): 156-160.
XING Yan , HE Xiaoxiao, HE Xuemin, LI Xingao. Application-Oriented Michelson Interference Simulation for New Engineering Education . Physical Experiment of College, 2022, 35(6): 156-160.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2022.06.032  或          http://dawushiyan.jlict.edu.cn/CN/Y2022/V35/I6/156
[1] 罗天娇 , 吴幸锴 , 孙微微 , 侯丽华 . 基于Matlab的迈克尔逊微小位移测量 [J]. 大学物理实验, 2022, 35(5): 96-99.
[2] 王 倩, 张建祥, 高国棉, 辛督强, 罗积军. “新工科”背景下大学物理实验教学中课程思政的探索与实践 [J]. 大学物理实验, 2022, 35(5): 145-148.
[3] 李劲松 . 超声波传感实验教学设计研究 [J]. 大学物理实验, 2022, 35(5): 128-130.
[4] 王 晶, 白炳莲. 面向“新工科”机械工程专业的大学物理教学改革探索 [J]. 大学物理实验, 2022, 35(3): 137-140.
[5] 杜兴鹏, 陈垲全, 刘汉子, 朱浩天, 陈子阳. 基于改进型迈克尔逊干涉仪的定量相位显微技术 [J]. 大学物理实验, 2022, 35(3): 71-74.
[6] 刘 鲍, 张 宇, 宋 阳, 周鹏宇, 翟阅臣. 三类型四维度”人才培养模式的探索与实践———以新能源材料与器件专业为例 [J]. 大学物理实验, 2022, 35(3): 145-149.
[7] 袁浩洋, 谈 浩 , 李英豪, 谌 利 , 朱丽颖, 刘 泉, 邓海游 , 刘宁亮, 易伟松 . 基于迈克尔逊干涉仪和智能手机定量测量溶液折射率 [J]. 大学物理实验, 2022, 35(3): 94-98.
[8] 邓 莉, 孙 可 , 刘金梅, 吴平颐 , 景培书, 刘梓谊 , 李成渊. Unity 内嵌 Matlab 子程序实现迈克尔逊干涉仪虚拟仿真实验中的干涉动态演示 [J]. 大学物理实验, 2022, 35(3): 124-130.
[9] 曹雨淅, 吴相龙, 陈 凯, 罗 浩. 基于单片机技术的迈克尔逊干涉仪热膨胀系数自动测量处理系统 [J]. 大学物理实验, 2022, 35(2): 94-96.
[10] 张 磊, 张鸿鑫, 叶力文, 吕思雨. 基于 VirtualLab Fusion 的迈克尔逊干涉仪仿真教学与拓展 [J]. 大学物理实验, 2022, 35(1): 83-88.
[11] 罗松杰, 王孝艳. 利用迈克尔逊干涉仪测量物体表面形貌 [J]. 大学物理实验, 2022, 35(1): 79-82.
[12] 王立英, 米文博. 新工科建设中物理学前沿研究深入本科教育的探索与实践 [J]. 大学物理实验, 2020, 33(1): 107-111.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[3] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[4] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[5] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[6] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[7] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[8] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[9] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
[10] Zeng Lina, Li Zaijin, Li Lin, Zhao Zhibin, Qiao Zhongliang, Qu Yi, Peng Hongyan. Study on experiment of laser marking Organic Glass [J]. Physical Experiment of College, 2020, 33(1): 37 -39 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed