Please wait a minute...
大学物理实验, 2023, 36(6): 131-135     https://doi.org/10.14139/j.cnki.cn22-1228.2023.06.026
  本期目录 | 过刊浏览 | 高级检索 |
工程教育专业认证背景下“材料力学性能”实验教学改革探析
张志浩
吉林化工学院,吉林 吉林 132000
On the Teaching Reform of “Material Mechanical Properties”in theContext of Engineering Education Specialization Certification
ZHANG Zhihao
下载:  PDF (892KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

“材料力学性能”是材料成型及控制工程专业核心基础课程,其目的在于掌握材料基本力学性能、测试方法以及分析微观机理,以便更好地运用到实践应用。 随着我国高等教育教学改革的不断推进,传统的教学模式已经无法适应时代发展需求,因此必须对其教学方法和手段加以创新。 将材料成型及控制工程专业培养方案与学生就业方向相结合,对材料力学性能理论和实验课程现有教学模式进行详细分析探讨,结合工程专业认证背景下课程教学的实际需求,对材料力学性能课程实验提出了内容优化方向,注重学生实际操作体验,提高基础知识运用和实验创新能力,以达到较好的“寓教于学”的效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张志浩
关键词:  工程教育  材料力学性能  专业认证  教学改革     
Abstract: 

The mechanical properties of materials are the core foundational courses in the field of materialforming and control engineering,with the aim of mastering the basic mechanical properties of materials ,testingmethods,and analyzing micro mechanisms , in order to better apply them to practical applications. With thedevelopment of higher education teaching reform in our country ,the traditional teaching mode has been unableto meet the needs of the times , so it is necessary to innovate its teaching methods and methods. Under theconsideration of engineering professional certification standard, the teaching reform of material mechanicalperformance course is carried out in depth ,the actual needs of course teaching under engineering professionalcertification are discussed, corresponding reform standards are formulated ,and the thought of course reform withengineering professional certification as the background is put forward, which provides more effective methodsand ways for teaching reform of material mechanical performance course.

Key words:  engineering education    mechanical properties of materials    professional certification    teaching reform
                    发布日期:  2023-12-25     
ZTFLH:  N 34  
引用本文:    
张志浩. 工程教育专业认证背景下“材料力学性能”实验教学改革探析 [J]. 大学物理实验, 2023, 36(6): 131-135.
ZHANG Zhihao. On the Teaching Reform of “Material Mechanical Properties”in theContext of Engineering Education Specialization Certification . Physical Experiment of College, 2023, 36(6): 131-135.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2023.06.026  或          http://dawushiyan.jlict.edu.cn/CN/Y2023/V36/I6/131
[1] 刘 艳, 王长昊 . OBE理念下大学物理实验课程教学模式的探索与实践 [J]. 大学物理实验, 2023, 36(6): 136-138.
[2] 刘子龙 , 石 迪, 李 雪, 侯晓楠. 基于“互联网 +”的大学物理实验教学改革与实践 [J]. 大学物理实验, 2023, 36(5): 120-124.
[3] 谢再晋, 周俊生, 刘付永红, 余光正, 廖继海. 面向创新设计竞赛的电子工艺教学改革 [J]. 大学物理实验, 2023, 36(4): 115-120.
[4] 马亚云 , 赵冬娥, 杨 芬, 张志伟, 李 沅. VirtualLab Fusion 在光偏振教学改革中的应用探索 [J]. 大学物理实验, 2023, 36(4): 81-87.
[5] 王治国, 张胜渠, 宋见喜, 李传鹏. 基于半导体物理的硅材料技术课程教学改革探索 [J]. 大学物理实验, 2023, 36(4): 112-114.
[6] 管 越, 王思妍, 朱丽丽, 李 佳, 牟佳佳 . 工程教育专业认证驱动下大学物理课程教学改革的探索 [J]. 大学物理实验, 2023, 36(1): 153-156.
[7] 陈展斌. 基于创新能力培养的物理专业实验实践教学探究 [J]. 大学物理实验, 2022, 35(6): 152-155.
[8] 王 倩, 张建祥, 高国棉, 辛督强, 罗积军. “新工科”背景下大学物理实验教学中课程思政的探索与实践 [J]. 大学物理实验, 2022, 35(5): 145-148.
[9] 李劲松 . 超声波传感实验教学设计研究 [J]. 大学物理实验, 2022, 35(5): 128-130.
[10] 杨俊秀, 鲍 佳, 姚 青. 工程教育认证背景下电磁实验教学改革 [J]. 大学物理实验, 2022, 35(5): 131-135.
[11] 高 珊, 田恕雪, 姜雨涵, 陶本通, 何林李, 王艳伟, 王振国. 基于工程教育认证的大学物理实验课程目标的建构与实践 [J]. 大学物理实验, 2022, 35(3): 157-160.
[12] 王 晶, 白炳莲. 面向“新工科”机械工程专业的大学物理教学改革探索 [J]. 大学物理实验, 2022, 35(3): 137-140.
[13] 吴卫华, 张 勇, 朱小芹. 课程思政在大学物理实验教学改革中的探索———以“硅半导体太阳能电池特性实验”为例 [J]. 大学物理实验, 2022, 35(1): 147-150.
[14] 刘 海, 王家理, 尹 跃. 应用型本科高校大学物理实验教学改革思考 [J]. 大学物理实验, 2022, 35(1): 143-146.
[15] 解玉鹏, 李鑫海, 盖啸尘. 应用型高校大学物理实验课程教学改革研究 [J]. 大学物理实验, 2020, 33(1): 123-125.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed