Please wait a minute...
大学物理实验, 2023, 36(4): 17-23     https://doi.org/10.14139/j.cnki.cn22-1228.2023.04.004
  本期目录 | 过刊浏览 | 高级检索 |
菲涅耳双棱镜干涉实验的拓展研究
房若宇 1* ,刘家玮 2 ,王耀廷 2
1.浙江大学 物理学院,浙江 杭州 310058;2.浙江大学 竺可桢学院,浙江 杭州 310058
Extended Research on Fresnel Biprism Interference Experiment
FANG Ruoyu 1* ,LIU Jiawei 2 ,WANG Yaoting 2
下载:  PDF (2752KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

传统的菲涅耳双棱镜干涉实验中,狭缝到屏的距离是通过光具座直接读出的,这样会带来明显的误差。针对这个问题,通过测量放大像间距和缩小像间距来精确计算出狭缝到屏的距离,进而计算出 He-Ne 激光的波长。该方法有效地减小了实验误差,显著提高了测量结果的精确度。利用Mathematica 软件对实验中获得的干涉条纹进行二维和三维的仿真模拟,得到了理想的干涉条纹图像,使实验结果更具形象化;同时进行了正交型双棱镜干涉的探索性实验,使用 Mathematica 获得了光强分布的三维模拟干涉图像。以上研究结果提高了双棱镜干涉实验的精确度,拓展了教学内容,达到了理想的教学效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
房若宇
刘家玮
王耀廷
关键词:  菲涅耳双棱镜  干涉  像间距  仿真模拟  正交型双棱镜     
Abstract: 

In the traditional Fresnel biprism interference experiment,the distance from the slit to the screen is directly read out through the optical bench,which brings obvious experimental errors.In this work,the distance from the slit to the screen was calculated by measuring the enlarged image spacing and the reduced image spacing,and thereafter the wavelength of the He-Ne laser was obtained.This method reduces the experimental error effectively and improves the accuracy of the measurement results significantly.Two-and three-dimensional simulations of the experimental interference fringes were carried out by using Mathematica software,giving ideal interference fringe images,which makes the experimental results more visualized.Meanwhile,an exploratory experiment of orthogonal biprism interference was carried out,and the three-dimensional and simulated interference images of the light intensity distribution were obtained by Mathematica.The above research results improve the accuracy of the biprism interference experiment,expand the teaching contents,and achieve the ideal teaching effect.

Key words:  Fresnel biprism    interference    image spacing    simulation    orthogonal biprism
                    发布日期:  2023-08-25     
ZTFLH:  O 438.1  
引用本文:    
房若宇 , 刘家玮 , 王耀廷 . 菲涅耳双棱镜干涉实验的拓展研究 [J]. 大学物理实验, 2023, 36(4): 17-23.
FANG Ruoyu, LIU Jiawei , WANG Yaoting . Extended Research on Fresnel Biprism Interference Experiment . Physical Experiment of College, 2023, 36(4): 17-23.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2023.04.004  或          http://dawushiyan.jlict.edu.cn/CN/Y2023/V36/I4/17
[1] 谢鑫鑫 , 赖盛英, 王慧琴 , 闫 然 , 樊伟征 . 利用梯形液膜干涉法实现液体浓度的自动检测 [J]. 大学物理实验, 2023, 36(4): 10-16.
[2] 尚玉峰. 非等振幅高斯光束干涉研究 [J]. 大学物理实验, 2023, 36(4): 41-46.
[3] 张丽颖, 顾菊观, 徐海斌 . 基于干涉图样分析牛顿环表面的缺陷 [J]. 大学物理实验, 2023, 36(3): 44-50.
[4] 沈雨欣, 翁存程, 蒋丽钦 . 双棱镜干涉法准确测量钠光波长 [J]. 大学物理实验, 2023, 36(3): 40-43.
[5] 陈禹同, 罗 浩, 王慧丽 . 基于虚拟仪器的微小位移测量实验 [J]. 大学物理实验, 2023, 36(2): 81-84.
[6] 张兴坊 , 刘凤收, 梁兰菊. 迈克尔逊干涉仿真平台的设计与应用 [J]. 大学物理实验, 2023, 36(1): 119-123.
[7] 向 倩, 丁益民 , 李 政, 杨翔宇. 基于滴定法探究溶液浓度与折射率的关系 [J]. 大学物理实验, 2023, 36(1): 23-28.
[8] 邢 岩, 和晓晓, 何学敏, 李兴鳌. 新工科背景下应用导向的迈克尔逊干涉模拟 [J]. 大学物理实验, 2022, 35(6): 156-160.
[9] 罗天娇 , 吴幸锴 , 孙微微 , 侯丽华 . 基于Matlab的迈克尔逊微小位移测量 [J]. 大学物理实验, 2022, 35(5): 96-99.
[10] 杜兴鹏, 陈垲全, 刘汉子, 朱浩天, 陈子阳. 基于改进型迈克尔逊干涉仪的定量相位显微技术 [J]. 大学物理实验, 2022, 35(3): 71-74.
[11] 袁浩洋, 谈 浩 , 李英豪, 谌 利 , 朱丽颖, 刘 泉, 邓海游 , 刘宁亮, 易伟松 . 基于迈克尔逊干涉仪和智能手机定量测量溶液折射率 [J]. 大学物理实验, 2022, 35(3): 94-98.
[12] 杨佳辉, 张 艳 , 肖 晗, 张子睿 , 顾子健, 张云哲 . 涡旋光干涉衍射综合试验仪的设计与制造 [J]. 大学物理实验, 2022, 35(3): 90-93.
[13] 邓 莉, 孙 可 , 刘金梅, 吴平颐 , 景培书, 刘梓谊 , 李成渊. Unity 内嵌 Matlab 子程序实现迈克尔逊干涉仪虚拟仿真实验中的干涉动态演示 [J]. 大学物理实验, 2022, 35(3): 124-130.
[14] 曹雨淅, 吴相龙, 陈 凯, 罗 浩. 基于单片机技术的迈克尔逊干涉仪热膨胀系数自动测量处理系统 [J]. 大学物理实验, 2022, 35(2): 94-96.
[15] 张 磊, 张鸿鑫, 叶力文, 吕思雨. 基于 VirtualLab Fusion 的迈克尔逊干涉仪仿真教学与拓展 [J]. 大学物理实验, 2022, 35(1): 83-88.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed