Please wait a minute...
大学物理实验, 2022, 35(3): 90-93     https://doi.org/10.14139/j.cnki.cn22-1228.2022.03.019
  本期目录 | 过刊浏览 | 高级检索 |
涡旋光干涉衍射综合试验仪的设计与制造
杨佳辉1,张 艳 1 ,肖 晗1,张子睿 1 ,顾子健1,张云哲 2*
1.西安石油大学 理学院,陕西 西安 710065; 2.西安文理学院 机械与材料工程学院,陕西 西安 710065
Design and Manufacture of Vortex Light Interference Diffraction Comprehensive Tester
YANG Jiahui1,ZHANG Yan 1* ,XIAO Han1,ZHANG Zirui 1 ,GU Zijian1,ZHANG Yunzhe 2*
下载:  PDF (1230KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

设计、制作一款涡旋光干涉衍射综合实验仪,将涡旋光的干涉、衍射整合在一个实验平台上。实验仪以涡旋光代替传统的激光,实现涡旋光的干涉、衍射现象,激发学生对前沿技术的兴趣,同时该实验仪器的光学部件可进行调整,可完成十几项基础光学实验,提高学生的动手能力以及实验能力。本实验仪在结构上整合四种光路,在小平台上进行光路优化,将干涉、衍射两种光路通过分束镜巧妙地结合在小尺寸上,极大地节约了四种光路占用的空间。本实验仪在大学物理实验、光学专业实验以及科研实验上具有极大的应用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨佳辉
张 艳
肖 晗
张子睿
顾子健
张云哲
关键词:  涡旋光  干涉  衍射  光路优化     
Abstract: 

In this project,we will design a comprehensive experimental instrument of vortex optical interference and diffraction,which integrates vortex optical interference and diffraction on an experimental platform. In the project experiment instrument,the traditional laser is replaced by vortex light,which makes undergraduates contact with new interference and diffraction phenomena,and stimulates undergraduates’interest in cutting- edge technology.At the same time,the optical components of the experimental instrument can be adjusted to improve undergraduates’experimental ability and hands-on ability.The experimental instrument integrates four kinds of light paths in the structure,optimizes the light path on the small platform,and skillfully combines the two kinds of interference diffraction light paths in the small size through the beam splitter,which greatly saves the space occupied by the four kinds of light paths. This instrument has great application value in university physics experiment,optical experiment and scientific research experiment.


Key words:  vortex optical    interference    diffraction    optical path optimization
               出版日期:  2022-06-25      发布日期:  2022-06-25      整期出版日期:  2022-06-25
ZTFLH:  O 4-33  
引用本文:    
杨佳辉, 张 艳 , 肖 晗, 张子睿 , 顾子健, 张云哲 . 涡旋光干涉衍射综合试验仪的设计与制造 [J]. 大学物理实验, 2022, 35(3): 90-93.
YANG Jiahui, ZHANG Yan , XIAO Han, ZHANG Zirui , GU Zijian, ZHANG Yunzhe . Design and Manufacture of Vortex Light Interference Diffraction Comprehensive Tester . Physical Experiment of College, 2022, 35(3): 90-93.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2022.03.019  或          http://dawushiyan.jlict.edu.cn/CN/Y2022/V35/I3/90
[1] 邓 莉, 孙 可 , 刘金梅, 吴平颐 , 景培书, 刘梓谊 , 李成渊. Unity 内嵌 Matlab 子程序实现迈克尔逊干涉仪虚拟仿真实验中的干涉动态演示 [J]. 大学物理实验, 2022, 35(3): 124-130.
[2] 刘惠萍, 商祥年, 程 凯. 基于 Matlab 的夫琅禾费衍射实验仿真研究 [J]. 大学物理实验, 2022, 35(3): 99-101.
[3] 杜兴鹏, 陈垲全, 刘汉子, 朱浩天, 陈子阳. 基于改进型迈克尔逊干涉仪的定量相位显微技术 [J]. 大学物理实验, 2022, 35(3): 71-74.
[4] 袁浩洋, 谈 浩 , 李英豪, 谌 利 , 朱丽颖, 刘 泉, 邓海游 , 刘宁亮, 易伟松 . 基于迈克尔逊干涉仪和智能手机定量测量溶液折射率 [J]. 大学物理实验, 2022, 35(3): 94-98.
[5] 曹雨淅, 吴相龙, 陈 凯, 罗 浩. 基于单片机技术的迈克尔逊干涉仪热膨胀系数自动测量处理系统 [J]. 大学物理实验, 2022, 35(2): 94-96.
[6] 张 磊, 张鸿鑫, 叶力文, 吕思雨. 基于 VirtualLab Fusion 的迈克尔逊干涉仪仿真教学与拓展 [J]. 大学物理实验, 2022, 35(1): 83-88.
[7] 罗松杰, 王孝艳. 利用迈克尔逊干涉仪测量物体表面形貌 [J]. 大学物理实验, 2022, 35(1): 79-82.
[8] 袁宇博, 赵小侠, 郭 钊, 杨 迪, 王 浩, 罗奇松, 贺俊芳, 王碧熙, 王红英, 付福兴, 杨森林. 基于圆孔的光近场远场衍射实验研究 [J]. 大学物理实验, 2022, 35(1): 7-12.
[9] 赵靓. 泊松亮斑的模拟仿真研究 [J]. 大学物理实验, 2020, 33(1): 82-84.
[10] 穆晓东, 郝子文. 等倾干涉条纹的采集与处理 [J]. 大学物理实验, 2019, 32(6): 36-39.
[11] 陈洪叶, 陈军, 刘智新, 秦羽丰, 姜贵君. 物理实验仪器深度开发的试验与探讨 [J]. 大学物理实验, 2019, 32(6): 122-125.
[12] 陈子阳, 李浩然, 蒲继雄. 杨氏双缝干涉实验中双缝缝宽的讨论 [J]. 大学物理实验, 2019, 32(6): 43-46.
[13] 许飞, 薛啸天, 宋文韬, 崔淦维, 姚慧敏, 朱江转. 全息照相实验中各种振动对系统稳定性影响的研究 [J]. 大学物理实验, 2019, 32(6): 18-20.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed