基于毛细现象和迈克尔逊干涉法测量液体的折射率
朱超瑜,蔡佳亮,庞松泽,韩文庆,魏 平,高 丽,陈小艺* ,李萍*
济南大学 物理科学与技术学院,山东 济南 250022
Measure the Refractive Index of Liquid by Combining CapillaryPhenomenon and Michelson Interferometry
ZHU Chaoyu,CAl Jialiang,PANG Songze, HAN Wenqing,WEI Ping, GAO Li, CHEN Xiaoyi* ,LI Ping*
University of Jinan, School of Physies and Technology, Shandong, Jinan,250022,China
摘要
结合毛细现象和迈克尔逊干涉原理测量液体折射率。首先推导了干涉条纹吞(或吐)的速度与液体折射率的关系式。实验记录了液体经毛细管流出时干涉条纹吞(或吐)的变化视频。编写Matlab 程序对视频进行数据处理得到干涉条纹吞(或吐)的速率,代入关系式计算得到了液体折射率,其相对误差为 0.76%。实现了液体折射率方便,快捷,准确测量。
关键词:
液体折射率
迈克尔逊干涉
毛细现象
Abstract:
The refractive index of liquid is measured by combining the capillary phenomenon and theMichelson interference principle. Firstly, the relational expression between the speed at which the interferencefringes swallow (or spit out) and the refractive index of the liquid was deduced.In the experiment, a videorecording the changes of the interference fringes swallowing (or spitting out) when the liquid flowed out throughthe capillary tube was made.A Matlab program was written to proeess the data of the video to obtain the speed,and then this speed was substituted into the relational expression to caleulate the relractive index of the liquid.The relative error of the experimental result was 0.76%6,Thus, convenient, fast and accurate measurement of therefractive index of liquid was achieved.
Key words:
refractive index of liquid
michelson interference
capillary phenomenon
出版日期: 2025-04-25
发布日期: 2025-04-25
整期出版日期: 2025-04-25
基金资助:
山东省本科教学改革重点项目(Z2022142;Z2022093;Z2024143);济南大学教改项目(JZD2401;J2408;JPY2201;J2206)
引用本文:
朱超瑜, 蔡佳亮, 庞松泽, 韩文庆, 魏 平, 高 丽, 陈小艺 , 李 萍 .
基于毛细现象和迈克尔逊干涉法测量液体的折射率
[J]. 大学物理实验, 2025, 38(2): 13-15.
ZHU Chaoyu, CAl Jialiang, PANG Songze, HAN Wenqing, WEI Ping, GAO Li, CHEN Xiaoyi, LI Ping.
Measure the Refractive Index of Liquid by Combining CapillaryPhenomenon and Michelson Interferometry
. Physical Experiment of College, 2025, 38(2): 13-15.
链接本文:
https://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.en22-228.2025.02.003
或
https://dawushiyan.jlict.edu.cn/CN/Y2025/V38/I2/13
[1]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[2]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[3]
WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing.
Theoretical and Experimental Research of A zimuthal-Radial Pendulum
[J]. Physical Experiment of College, 2020, 33(1): 1
-6
.
[4]
LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling
[J]. Physical Experiment of College, 2020, 33(1): 7
-9
.
[5]
DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi.
MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system
[J]. Physical Experiment of College, 2020, 33(1): 10
-16
.
[6]
MA Kun.
Experiment Study on the Measuring Young' s Modulus by Stretching
[J]. Physical Experiment of College, 2020, 33(1): 17
-20
.
[7]
FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou.
Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison
[J]. Physical Experiment of College, 2020, 33(1): 21
-24
.
[8]
LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli.
A New Method for Simple and Rapid Measurement of Refractive Index
[J]. Physical Experiment of College, 2020, 33(1): 25
-28
.
[9]
WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng.
Progress and Applications of Electron Spin Resonance in Biology
[J]. Physical Experiment of College, 2020, 33(1): 29
-33
.
[10]
CHEN Yingmo, SHEN Siyi, WANG Jie.
Study on the Characteristics of Silicon Photocells
[J]. Physical Experiment of College, 2020, 33(1): 34
-36
.
Viewed
Full text
Abstract
Cited
Shared
Discussed