Please wait a minute...
大学物理实验, 2024, 37(4): 7-11     https://doi.org/10.14139/i.cnki.cn22-1228.2024.04.002
  本期目录 | 过刊浏览 | 高级检索 |
气体流量对楔形间隙氦气放电特性的影响
霍伟刚 1∗ ,齐宏松 ,刘文媛 ,张 昕
1.辽宁师范大学 物理与电子技术学院,辽宁 大连  116029; 1.中国人民解放军南部战区总医院,广东 广州  510010
Influence of Gas Flow Rate on Helium DischargeCharacteristics in a Wedge Gap
HU0 Weigang1* ,QI Hongsong1 ,LIU Wenyuan1 ,ZHANG Xin2
下载:  PDF (2248KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

开发了一种由两个矩形铜电极组成的楔形放电装置,利用这种装置研究了楔形间隙内的氦气放电特性。 发现了楔形氦气放电长度、放电电流和谱线强度随氦气流量的增加先快速增加,再缓慢减小,最后几乎不变的规律,但击穿电压却先缓慢减小,然后快速增加,最后几乎不变。 得到了相应的特征分区图。 建立了放电长度特征分区图、击穿电压特征分区图、 放电电流特征分区图和光谱强度特征分区图之间的内在物理关联。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
霍伟刚
齐宏松
刘文媛
张 昕
关键词:  气体流量  楔形间隙  放电长度  击穿电压     
Abstract: 

A barrier discharge device composed of two rectangular copper electrode is developed to generate anatmospheric pressure helium discharge.This discharge characteristics generated in a wedge gap is studied.lt isfound that with the inerease of gas flow rate , the discharge length along with breakdown voltage and spectraline intensity displays inerease rapidly-decrease slowly-almost unchanged, but discharge current firstlydecreases slowly , then increases rapidly ,finally almost unchanged.The characteristic regions are obtained. The underlying physical correlation has been established among discharge length charaeteristic region , breakdown voltage characteristic region , discharge current characteristic region , and spectral intensity characteristic region.

Key words:  gas flow rate    wedge gap    discharge length    breakdown
               出版日期:  2024-08-25      发布日期:  2024-08-25      整期出版日期:  2024-08-25
ZTFLH:  G 642.0  
引用本文:    
霍伟刚 , 齐宏松 , 刘文媛 , 张 昕 . 气体流量对楔形间隙氦气放电特性的影响 [J]. 大学物理实验, 2024, 37(4): 7-11.
HU Weigang , QI Hongsong , LIU Wenyuan , ZHANG Xin. Influence of Gas Flow Rate on Helium DischargeCharacteristics in a Wedge Gap . Physical Experiment of College, 2024, 37(4): 7-11.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/i.cnki.cn22-1228.2024.04.002  或          http://dawushiyan.jlict.edu.cn/CN/Y2024/V37/I4/7
[1] 王锦辉, 顾若溪, 赵西梅, 周 红, 张小灵, 王宇兴. 移动互联网背景下大学物理实验课程教学资源库的建设与实践 [J]. 大学物理实验, 2024, 37(4): 127-131.
[2] 闵 锐, 耿 亮, 邓 罡. 基于芯片专业人才创新能力培养的物理课程体系改革探索与实践 [J]. 大学物理实验, 2024, 37(4): 139-144.
[3] 解玉鹏. 新工科背景下大学物理实验师资培训的思考 [J]. 大学物理实验, 2024, 37(4): 132-134.
[4] 王 栋. 新时代大学物理实验课程思政建设的实践与思考 [J]. 大学物理实验, 2024, 37(4): 135-138.
[5] 孙 艳, 于华民, 沈 洋, 何 爽. 大学物理自主综合设计性实验的研究与实践 [J]. 大学物理实验, 2024, 37(3): 128-132.
[6] 周鹏宇 , 迟凯粼, 张 宇, 刘 鲍. 新工科选修课的通识教育化研究———以“纳米材料与器件”为例 [J]. 大学物理实验, 2024, 37(3): 119-123.
[7] 刘文彦 , 陈长兰 , 王长昊 . 慧教学改革下大学物理课程思政教学设计———以“熵增加原理”为例 [J]. 大学物理实验, 2024, 37(1): 123-127.
[8] 史韡朝, 徐 崇 , 孙家军. “数形结合”———测量及不确定度教学模式的改革与研究 [J]. 大学物理实验, 2024, 37(1): 114-116.
[9] 唐 军, 李 艳, 秦丽霞, 张 雷, 张 伦, 寻之朋. 工科特色高校多样化基础物理实验体系构建 [J]. 大学物理实验, 2024, 37(1): 128-132.
[10] 聂 琴 , 杨 迪, 王 珩. 面向应用型人才培养的大学物理一流课程建设探索与实践 [J]. 大学物理实验, 2023, 36(3): 127-133.
[11] 王 鹏, 操龙德, 章礼华, 祁义红. “三地一区”视域下高校“三电”实验课程教学改革与实践 [J]. 大学物理实验, 2023, 36(3): 115-120.
[12] 刘文彦 , 张海月 , 杨 雪 . “新工科”背景下大学物理“SEFDS”教学模式探索[J]. 大学物理实验, 2023, 36(2): 168-170.
[13] 金克新 , 孙琪杰, 王 民, 郑建邦. 微小形变电测法的教学内容设计和优化研究 [J]. 大学物理实验, 2023, 36(2): 50-53.
[14] 谢再晋 , 廖继海 , 何 璞 , 刘付永红 , 周 易 . 电子工艺实训线上线下混合教学模式的探索 [J]. 大学物理实验, 2023, 36(2): 144-149.
[15] 王 磊 , 邹 辉. 面向未来产业的特色教材建设思考与实践———以太赫兹产业为例 [J]. 大学物理实验, 2023, 36(2): 150-153.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed