Please wait a minute...
大学物理实验, 2024, 37(1): 92-98     https://doi.org/10.14139/j.cnki.cn22-1228.2024.01.019
  本期目录 | 过刊浏览 | 高级检索 |
脉冲核磁共振基础仿真实验平台设计与实现
项扬钦 1 ,陈雅婷 1 ,林芳竹 1 ,王翔宇 1 ,朱发玉 1 ,陈珊珊 1* ,徐罗元 2
1.上海健康医学院 医学影像学院,上海 201318;2.上海 云教育科技有限公司,上海 200433
Design and Implementation of Simulation Experimental Platform for Pulse Nuclear Magnetic Resonance
XIANG Yangqin 1 ,CHEN Yating 1 ,LIN Fangzhu 1 ,WANG Xiangyu 1 ,ZHU Fayu 1 ,CHEN Shanshan 1* ,XU Luoyuan 2
下载:  PDF (3061KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为了解决医学影像技术或智能医学影像工程等专业核磁共振实验教学面临的难题,基于数值仿真技术搭建了脉冲核磁共振基础仿真实验平台。该平台可实现核磁共振信号的检测、磁场强度的间接测量、磁场均匀性的测量与调节、射频脉冲角度的确定等功能,平台支持参数任意设置与调节、信号动态采集与显示、频谱快速生成与读取、采样停止与信息提示,该虚拟仿真实验平台操作简单,灵活可控,支持多终端在线操作,为学生学习物理原理和观察物理现象提供了处处能学和时时可学的资源,有助于学生理解抽象的物理原理,增强实验教学的效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
项扬钦
陈雅婷
林芳竹
王翔宇
朱发玉
陈珊珊
徐罗元
关键词:  脉冲傅里叶  核磁共振  虚拟仿真  实验平台     
Abstract: 

In order to solve the challenges faced by magnetic resonance experimental teaching in medical imaging technology or intelligent medical imaging engineering,a basic simulation experimental platform for pulse magnetic resonance was built based on numerical simulation technology. This platform can achieve functions such as nuclear magnetic resonance signal detection,indirect measurement of magnetic field strength,measurement and adjustment of magnetic field uniformity,determination of RF pulse angle,etc.The platform supports arbitrary parameter setting and adjustment,dynamic signal acquisition and display,rapid spectrum generation and reading,sampling stop and information prompt.The virtual simulation experimental platform is easy to operate,flexible and controllable,and supports online operation of multiple terminals.It provides students with resources that can be learned everywhere and constantly for learning physical principles and observing physical phenomena,helping them understand abstract physical principles and enhancing the effectiveness of experimental teaching.

Key words:  pulse fourier transform    nuclear magnetic resonance    virtual simulation    experimental platform
               出版日期:  2024-02-25      发布日期:  2024-02-25      整期出版日期:  2024-02-25
ZTFLH:  O 482.53  
  G 434  
引用本文:    
项扬钦 , 陈雅婷 , 林芳竹, 王翔宇 , 朱发玉 , 陈珊珊 , 徐罗元 . 脉冲核磁共振基础仿真实验平台设计与实现 [J]. 大学物理实验, 2024, 37(1): 92-98.
XIANG Yangqin, CHEN Yating , LIN Fangzhu , WANG Xiangyu , ZHU Fayu , CHEN Shanshan , XU Luoyuan . Design and Implementation of Simulation Experimental Platform for Pulse Nuclear Magnetic Resonance . Physical Experiment of College, 2024, 37(1): 92-98.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2024.01.019  或          http://dawushiyan.jlict.edu.cn/CN/Y2024/V37/I1/92
[1] 雷前召, 李芳菊, 郭 蕾, 安 博. 塞曼效应实验之虚拟仿真与电脑辅助对比分析 [J]. 大学物理实验, 2024, 37(1): 99-103.
[2] 刘子龙 , 石 迪, 李 雪, 侯晓楠. 基于“互联网 +”的大学物理实验教学改革与实践 [J]. 大学物理实验, 2023, 36(5): 120-124.
[3] 齐丽晶, 刘文彦 . 大学物理实验虚拟仿真实验探索与实践 [J]. 大学物理实验, 2023, 36(4): 130-133.
[4] 李 曼, 张淳棠, 刘安琪, 郭宇锋 , 杨可萌, 姚佳飞, 张 珺. 基于 LabVIEW 与 TCAD 的 MOS 场效应晶体管虚拟仿真实验平台设计与实现 [J]. 大学物理实验, 2023, 36(3): 106-110.
[5] 张 勇 , 贾洪声 , 刘惠莲 , 鄂元龙, . 超高压物理实验技术虚拟仿真实验设计与实现 [J]. 大学物理实验, 2022, 35(5): 113-117.
[6] 何学敏 , 邢家林 , 张丁源 , 顾起彰 , 毛巍威 . 基于LabVIEW的虚拟仿真实验———惠斯通电桥测电阻 [J]. 大学物理实验, 2022, 35(5): 92-95.
[7] 张健平, 蔡 勇. “新工科”背景下工科类专业性实验虚拟仿真教学模式的构建与实施 [J]. 大学物理实验, 2022, 35(4): 140-149.
[8] 邓 莉, 孙 可 , 刘金梅, 吴平颐 , 景培书, 刘梓谊 , 李成渊. Unity 内嵌 Matlab 子程序实现迈克尔逊干涉仪虚拟仿真实验中的干涉动态演示 [J]. 大学物理实验, 2022, 35(3): 124-130.
[9] 李文韬 , 孙茜茜 , 余茗舟 , 陆辰凌 , 李永涛, 王增旭, . 基于LabVIEW 的虚拟弗兰克赫兹实验仪 [J]. 大学物理实验, 2022, 35(2): 79-84.
[10] 王世燕, 袁顺东, 张亚萍, 阮可欣. 虚拟实验平台建设与数值模拟方法在液晶综合实验中的应用及实践研究[J]. 大学物理实验, 2022, 35(2): 1-6.
[11] 席秋颖, 王 旗. 新时代实验教学中心信息化建设[J]. 大学物理实验, 2022, 35(2): 138-142.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed