石墨烯/钡铁氧体复合材料的制备及微波吸收性能的综合实验设计
黄 凯 * ,廖卫华,徐雯雯,李 平,余江应,徐金荣
安徽建筑大学数理学院,安徽 合肥 230601
Comprehensive Experimental Design for the Preparation and Microwave Absorption Properties of Graphene/Barium Ferrite Composites
HUANG Kai * ,LIAO Weihua,XU Wenwen,LI Ping,YU Jiangying,XU Jinrong
摘要
电磁波污染已经严重威胁到信息安全和人体的健康,微波吸收材料被认为是解决电磁波污染问题最可行的措施之一。通过水热法获取氧化石墨烯/钡铁氧体纳米复合物,利用 X-射线衍射仪、扫描电子显微镜、振动样品磁强计和矢量网络分析仪等分析技术对所制备的材料进行了表征。结果显示,当复合材料的厚度为 2 mm 时,其有效带宽可达 6.8 GHz,当频率在 12.64 GHz 时,反射损耗最小为 -41.66 dB。通过此综合实验设计,从实验的角度对纳米复合材料吸波机理进行了研究,有助于提高学生的科研兴趣,启发学生创新思维。
关键词:
石墨烯/钡铁氧体
吸波
综合实验
Abstract:
Electromagnetic wave pollution has become a hidden danger to information security and human health.Microwave absorption materials are considered to be one of the most feasible measures to solve the problemof electromagnetic wave pollution. The graphene/barium ferrite nanocomposites were prepared by hydrothermal method and characterized by X-ray diffractometer,scanning electron microscope,vibrating sample magnetometer and vector network analyzer.The results reveal that when the thickness of the composite is 2 mm,the effective bandwidth can reach 6.8 GHz.When the frequency is 12.64 GHz,the minimum reflection loss is-41.66 dB. Through the comprehensive experimental design,the absorbing mechanism of nano-composite materials is studied from the experimental point of view,which is helpful to improve students’interest in scientific research and inspire students’innovative thinking.
Key words:
graphene/barium ferrite
microwave absorbing
comprehensive experiments
出版日期: 2024-02-25
发布日期: 2024-02-25
整期出版日期: 2024-02-25
引用本文:
黄 凯 , 廖卫华, 徐雯雯, 李 平, 余江应, 徐金荣.
石墨烯/钡铁氧体复合材料的制备及微波吸收性能的综合实验设计
[J]. 大学物理实验, 2024, 37(1): 41-44.
HUANG Kai , LIAO Weihua, XU Wenwen, LI Ping, YU Jiangying, XU Jinrong.
Comprehensive Experimental Design for the Preparation and Microwave Absorption Properties of Graphene/Barium Ferrite Composites
. Physical Experiment of College, 2024, 37(1): 41-44.
链接本文:
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2024.01.009
或
http://dawushiyan.jlict.edu.cn/CN/Y2024/V37/I1/41
[1]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[2]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[3]
WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing.
Theoretical and Experimental Research of A zimuthal-Radial Pendulum
[J]. Physical Experiment of College, 2020, 33(1): 1
-6
.
[4]
LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling
[J]. Physical Experiment of College, 2020, 33(1): 7
-9
.
[5]
DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi.
MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system
[J]. Physical Experiment of College, 2020, 33(1): 10
-16
.
[6]
MA Kun.
Experiment Study on the Measuring Young' s Modulus by Stretching
[J]. Physical Experiment of College, 2020, 33(1): 17
-20
.
[7]
FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou.
Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison
[J]. Physical Experiment of College, 2020, 33(1): 21
-24
.
[8]
LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli.
A New Method for Simple and Rapid Measurement of Refractive Index
[J]. Physical Experiment of College, 2020, 33(1): 25
-28
.
[9]
WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng.
Progress and Applications of Electron Spin Resonance in Biology
[J]. Physical Experiment of College, 2020, 33(1): 29
-33
.
[10]
CHEN Yingmo, SHEN Siyi, WANG Jie.
Study on the Characteristics of Silicon Photocells
[J]. Physical Experiment of College, 2020, 33(1): 34
-36
.
Viewed
Full text
Abstract
Cited
Shared
Discussed