光纤振动传感器测量杨氏模量和物体的惯性质量
陈星辉 1* ,彭静 1 ,吴俊辰 2 ,唐华清 3 ,高晓艳 1 ,陈光伟 1
1.湖南工业大学 理学院,湖南 株洲 412007;2.湖南工业大学(科技学院)工学二部,湖南 株洲412008;3.湖南工业大学 电气与信息工程学院,湖南 株洲 412007)
Measurement of Young's Modulus and Inertial Mass of Objects Using Fiber Optic Vibration Sensors
PENG Jing 1* ,CHEN Xinghui 1 ,WU Junchen 2 ,TANG Huaqing 3 ,GAO Xiaoyan 1 ,CHEN Guangwei 1
1.School of Science,Hunan University of Technology,Zhuzhou 412007 China;2.Department of Engineering II,Hunan University of Technology (Science and Technology College),Zhuzhou 412008,China;3.School of Electrical and Information Engineering,Hunan University of Technology,Zhuzhou 412007,China
摘要
利用自制的光纤振动传感器和常规物理实验器材搭建了可用于多种物理量测量的实验装置。根据光纤振动传感器的动态特性,在其后坡线性工作区间内,采用共振法测量试验样品(锰钢条)的杨氏模量和物体的惯性质量。此方法测量精确度高、误差小、成本低、操作简单。
关键词:
光纤振动传感器
反射式光纤
杨氏模量
惯性质量
强度调制
Abstract:
An experimental setup for measuring multiple physical quantities was constructed using a self-developed fiber-optic vibration sensor and conventional physics laboratory equipment.Leveraging the dynamic
characteristics of the fiber-optic sensor within its posterior slope linear working range,the resonance methodwas employed to measure the Young's modulus of a test sample (manganese steel strip)and the inertial mass
of objects. This approach offers high measurement precision,minimal error,low cost,and straightforwardoperation.
Key words:
fiber optic vibration sensor
reflective optical fiber
Young's modulus
inertial mass
intensity modulation
出版日期: 2025-08-25
发布日期: 2025-08-25
整期出版日期: 2025-08-25
基金资助:
湖南省大学生创新训练计划项目(湘教通〔2024〕118 号-29);湖南省普通本科高校教学改革研究项目(湘教通〔2024〕147号 202401001033)
引用本文:
陈星辉, 彭 静 , 吴俊辰, 唐华清 , 高晓艳 , 陈光伟 .
光纤振动传感器测量杨氏模量和物体的惯性质量
[J]. 大学物理实验, 2025, 38(4): 39-43.
PENG Jing, CHEN Xinghui , WU Junchen , TANG Huaqing , GAO Xiaoyan , CHEN Guangwei .
Measurement of Young's Modulus and Inertial Mass of Objects Using Fiber Optic Vibration Sensors
. Physical Experiment of College, 2025, 38(4): 39-43.
链接本文:
https://dawushiyan.jlict.edu.cn/CN/10,14139/j.cnki.cn22-1228.2025.04.007
或
https://dawushiyan.jlict.edu.cn/CN/Y2025/V38/I4/39
[1]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[2]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[3]
WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing.
Theoretical and Experimental Research of A zimuthal-Radial Pendulum
[J]. Physical Experiment of College, 2020, 33(1): 1
-6
.
[4]
LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling
[J]. Physical Experiment of College, 2020, 33(1): 7
-9
.
[5]
DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi.
MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system
[J]. Physical Experiment of College, 2020, 33(1): 10
-16
.
[6]
MA Kun.
Experiment Study on the Measuring Young' s Modulus by Stretching
[J]. Physical Experiment of College, 2020, 33(1): 17
-20
.
[7]
FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou.
Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison
[J]. Physical Experiment of College, 2020, 33(1): 21
-24
.
[8]
LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli.
A New Method for Simple and Rapid Measurement of Refractive Index
[J]. Physical Experiment of College, 2020, 33(1): 25
-28
.
[9]
WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng.
Progress and Applications of Electron Spin Resonance in Biology
[J]. Physical Experiment of College, 2020, 33(1): 29
-33
.
[10]
CHEN Yingmo, SHEN Siyi, WANG Jie.
Study on the Characteristics of Silicon Photocells
[J]. Physical Experiment of College, 2020, 33(1): 34
-36
.
Viewed
Full text
Abstract
Cited
Shared
Discussed