Please wait a minute...
大学物理实验, 2022, 35(4): 71-77     https://doi.org/10.16039/j.cnki.cn22-1228.2022.04.016
  本期目录 | 过刊浏览 | 高级检索 |
霓虹演示装置的设计与实现
舒 畅1,尚慧敏1,陶梦萍1,郭娟娟2,黄运米1*  
1.温州大学 数理学院,浙江 温州 325035; 2.北京外国语大学 温州附属学校,浙江 温州 325015
Design and Implementation of Rainbow and Secondary Rainbow Demonstrator
SHU Chang1,SHANG Huimin1,TAO Mengping1,GUO Juanjuan2,HUANG Yunmi1*
下载:  PDF (3335KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

太阳光在雨滴中经过折射反射再折射形成彩虹。霓是太阳光在雨滴中折射反射再反射再折射形成的自然现象。由于霓比彩虹在雨滴中反射多了一次,因而光强会减弱,因而霓难以看见。传统彩虹演示仪再现的彩虹现象不够明显,也无法同时显示虹与霓,并且存在制作不便、再现要求高、无法进行定量研究等不足。经过深入细致的研究,本研究制作了一种新型的霓虹演示装置,再现了霓虹现象。该装置操作简便,便携性高,现象明显,对环境要求低,还能定量研究霓虹的影响因素。通过该霓虹演示装置的演示能加深对大气中光学现象的认识,更深入的理解霓虹形成的原理。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
舒 畅
尚慧敏
陶梦萍
郭娟娟
黄运米
关键词:    彩虹  清晰便捷  折射  反射  色散     
Abstract: 

Rainbow and secondary rainbow are common natural phenomena in the sky after rain.Rainbows are formed after sunlight is refracted twice and reflected once in raindrops.The secondary rainbow is formed by two reflections and two refractions of sunlight in raindrops.Because secondary rainbow is reflected in raindrops more than rainbow once,the light intensity will weaken. Therefore,the brightness of secondary rainbow is much weaker than that of rainbow,so secondary rainbow is very rare.The rainbow phenomenon eproduced by the traditional rainbow demonstrator is not obvious,and it cannot display rainbow and secondary rainbow at the same time. It is inconvenient to make,and has high reproduction requirements. It cannot be studied quantitatively.After in-depth and detailed research,a new rainbow and secondary rainbow demonstration device is made to reproduce the rainbow and secondary rainbow phenomenon.The device has the advantages of simple operation,high portability,obvious phenomenon and low environmental requirements.It can also quantitatively study the influencing factors of rainbow and secondary rainbow.The demonstration of the rainbow and secondary

rainbow demonstrator can deepen the understanding of optical phenomena in the atmosphere and the principle

of rainbow and secondary rainbow formation.

Key words:  rainbow    secondary rainbow    clear and convenient    refraction    reflection    dispersion
               出版日期:  2022-08-25      发布日期:  2022-08-25      整期出版日期:  2022-08-25
ZTFLH:  O 4-34  
引用本文:    
舒 畅, 尚慧敏, 陶梦萍, 郭娟娟, 黄运米. 霓虹演示装置的设计与实现 [J]. 大学物理实验, 2022, 35(4): 71-77.
SHU Chang, SHANG Huimin, TAO Mengping, GUO Juanjuan, HUANG Yunmi. Design and Implementation of Rainbow and Secondary Rainbow Demonstrator . Physical Experiment of College, 2022, 35(4): 71-77.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1228.2022.04.016  或          http://dawushiyan.jlict.edu.cn/CN/Y2022/V35/I4/71
[1] 刘树成, 夏志成, 彭佳航, 秦健淮, 杨 璇, 车浩楠. 利用光的反射对弦振动实验的改进 [J]. 大学物理实验, 2022, 35(4): 9-12.
[2] 王集锦, 普文冉, 马 骏, 王铁龙, 张 顺, 韩圣贤, 刘作业, 杨冬燕. 紫外可见漫反射光谱和Tauc plot 方法分析无机Ruddlesden-Popper 钙钛矿带隙 [J]. 大学物理实验, 2022, 35(4): 13-16.
[3] 王可畏, 胡四平, 冯锦平, 彭亚斌, 卢社阶. 利用线阵CCD测量液体折射率实验研究 [J]. 大学物理实验, 2022, 35(4): 58-62.
[4] 袁浩洋, 谈 浩 , 李英豪, 谌 利 , 朱丽颖, 刘 泉, 邓海游 , 刘宁亮, 易伟松 . 基于迈克尔逊干涉仪和智能手机定量测量溶液折射率 [J]. 大学物理实验, 2022, 35(3): 94-98.
[5] 杨振清, 周晋萱, 郭 昊, 张 颍, 揣 策, 邵长金. 虹与霓设计与再现 [J]. 大学物理实验, 2022, 35(3): 34-40.
[6] 陈水桥, 蔡 力 , 陈 丰, 陈志博 , 苏婷琳, 颜 欣 , 张作成. 液晶空间光调节杨氏双缝干涉法透明介质折射率的优化测量 [J]. 大学物理实验, 2022, 35(3): 41-46.
[7] 刘宁亮, 李沁瑶 , 丁驰竹. 利用牛顿环测量液体折射率仿真实验设计与开发 [J]. 大学物理实验, 2022, 35(2): 85-88.
[8] 许惠敏, 黄若楠, 雷豪洁, 丁焕林, 何俊达, 罗劲明. 固体折射率的激光散斑测量实验 [J]. 大学物理实验, 2022, 35(2): 121-124.
[9] 李春江, 李陆余, 杨靖垒, 李廷荣, 向文丽. 一种简便快速测量折射率的新方法研究 [J]. 大学物理实验, 2020, 33(1): 25-28.
[10] 于莉莉, 黄雷, 李茂义, 马浩骢, 喻孜. 多次反射光杠杆法测金属线胀系数的公式修正 [J]. 大学物理实验, 2019, 32(6): 6-8.
[11] 刘宪云, 孙新涛, 彭聪, 夏丽. 表面等离激元线光栅的有限元法研究 [J]. 大学物理实验, 2019, 32(6): 1-5.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed