Please wait a minute...
大学物理实验, 2022, 35(2): 121-124     https://doi.org/10.14139/j.cnki.cn22-1228.2022.02.026
  本期目录 | 过刊浏览 | 高级检索 |
固体折射率的激光散斑测量实验
许惠敏,黄若楠,雷豪洁,丁焕林,何俊达,罗劲明*
嘉应学院 物理与电子工程学院,广东 梅州 514015
Experiments of Laser Speckle Measurement on Solid Refractive Index
XU Huimin , HUANG Ruonan , LEI Haojie , DING Huanlin , HE Junda , LUO Jinming


下载:  PDF (1081KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

根据透明固体的光学折射特性,对激光散斑法测量固体折射率遇到的关键问题进行分析讨论,搭建了近场散斑、远场散斑和像面散斑三种光学测量系统并进行了测量,即首先记录了固体折射前后的两幅散斑图,然后获得折射前后的微小面内偏移量,再根据理论公式计算出固体折射率。 利用现有方法和改进方法,对厚度为 3mm 的固体玻璃折射率分别进行了传统全息和数字全息的实验对比研究。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许惠敏
黄若楠
雷豪洁
丁焕林
何俊达
罗劲明
关键词:  散斑  固体折射率  传统全息  数字全息     
Abstract: 

According to the optical refraction characteristic of transparent solid,the key problem encountered in the measurement of solid refractive index by laser speckle method is analyzed and discussed,and three kinds of optical measurement systems including near-field speckle,far-field speckle and image plane speckle are buil for measurement.Firstly,two speckle patterns before and after solid refraction are recorded,and then the small in-plane displacement before and after refraction can be obtained.Finally,the refractive index of solid is calculated according to the theoretical formula.Using the existing and improved methods, a comparative experimental study on the refractive index of 3 mm thick solid glass has been carried out through traditional holography and digital holography respectively.

Key words:  speckle    solid refractive index    traditional holography    digital holography
               出版日期:  2022-04-25      发布日期:  2022-04-25      整期出版日期:  2022-04-25
ZTFLH:  O 438.1  
引用本文:    
许惠敏, 黄若楠, 雷豪洁, 丁焕林, 何俊达, 罗劲明. 固体折射率的激光散斑测量实验 [J]. 大学物理实验, 2022, 35(2): 121-124.
XU Huimin , HUANG Ruonan , LEI Haojie , DING Huanlin , HE Junda , LUO Jinming. Experiments of Laser Speckle Measurement on Solid Refractive Index . Physical Experiment of College, 2022, 35(2): 121-124.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2022.02.026  或          http://dawushiyan.jlict.edu.cn/CN/Y2022/V35/I2/121
[1] 杜兴鹏, 陈垲全, 刘汉子, 朱浩天, 陈子阳. 基于改进型迈克尔逊干涉仪的定量相位显微技术 [J]. 大学物理实验, 2022, 35(3): 71-74.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed