Please wait a minute...
大学物理实验, 2019, 32(6): 80-83     https://doi.org/10.14139/j.cnki.cn22-1228.2019.06.019
  本期目录 | 过刊浏览 | 高级检索 |
纳米结构B4C的合成及其性质的研究
宋乐乐,解玉鹏*
吉林化工学院 理学院,吉林 吉林132022
Exploring the Synthesis and Properties of Nano-structured B4C
SONG Lele,XIE Yupeng*
下载:  PDF (4273KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

B4C是继金刚石和立方氮化硼之后自然界中第三硬的超硬材料。然而人们在硬度方面对它的应用却很少。这主要是因为B4C的自扩散系数很低,很难合成出块体材料的B4C其次,B4C断裂韧性很低,达不到工业应用的标准,在工业应用中容易出现碎裂。本篇文章利用高温高压法合成了块体材料的B4C并且合成的材料具有非常高的致密性。通过硬度测试发现其硬度高于材料的单晶硬度值。利用压痕法测量了样品的断裂韧性,其断裂韧性为4.51 MPa?m1/2,这一数值基本接近了工业应用的标准。通过扫面电镜测试发现其具有纳米层状结构。通过原理分析可知,纳米片层结构是导致B4C有高硬度和高断裂韧性的原因。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋乐乐
解玉鹏
关键词:  B4C  超硬材料  纳米层状结构  断裂韧性     
Abstract: 

Boron carbide (B4C) is the third hardest materials in the nature following the diamond and cubic boron nitride. However, due to bulk B4C is hard to be synthesized and the fracture toughness of B4C is very low, B4C can not be widely used as superhard material. In this work, High-quality bulk B4C was successfully prepared at high pressure and high temperature. It is worth nothing that the as-synthesized B4C possess high hardness and high fracture toughness (4.51 MPa?m1/2)which are superior to single crystal. The high Vickers hardness and high fracture toughness of B4C are attributeed to its high densification and nanosheet structure.

Key words:  Boron carbide    Superhard Material    nanosheet structure    Fracture toughness
               出版日期:  2019-12-25      发布日期:  2019-12-25      整期出版日期:  2019-12-25
ZTFLH:  O469  
引用本文:    
宋乐乐, 解玉鹏. 纳米结构B4C的合成及其性质的研究 [J]. 大学物理实验, 2019, 32(6): 80-83.
SONG Lele, XIE Yupeng. Exploring the Synthesis and Properties of Nano-structured B4C . Physical Experiment of College, 2019, 32(6): 80-83.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2019.06.019  或          http://dawushiyan.jlict.edu.cn/CN/Y2019/V32/I6/80
[1] 宋乐乐, 王常春. 具有层状结构过渡金属硼化物硬度机理的研究 [J]. 大学物理实验, 2019, 32(6): 13-17.
[1] Yu Lili, Huang Lei, Li Maoyi, Ma Haocong, Yu Zi. Modification of The Formula For Measuring Linear Expansion Coefficient of Metal by Multiple Reflected Light Lever Method [J]. Physical Experiment of College, 2019, 32(6): 6 -8 .
[2] LIANG Xifang, Jie Hai, Luo Qiong, Zhang Chengyun. Vehicle Flow Detection Based On Pymelectric Infrared Sensor [J]. Physical Experiment of College, 2019, 32(6): 59 -62 .
[3] WANG Ping, LIU Zhuqin. A New Method For Measuring The Coefficient of Expansion of Liquid [J]. Physical Experiment of College, 2019, 32(6): 63 -66 .
[4] WANG Jingxue. Measurement of Ferroelectric Polarization of Unconventional Ferroelectrics at Low Temperature by Pyroelectric Technology #br# [J]. Physical Experiment of College, 2019, 32(6): 67 -72 .
[5] Li Lifang, Wu Lina, Yan Yingce. The Effect of the Central Spot in Newton’s Ring On The Radius of Curvature [J]. Physical Experiment of College, 2019, 32(6): 73 -76 .
[6] CHEN Yifan, ZHANG Jingqi, WANG Guizhong. Effect of Driving Voltage on Optical Response Time of Twisted Nematic Liquid Crystal [J]. Physical Experiment of College, 2019, 32(6): 9 -12 .
[7] SONG Lele, WANG Changchun. Exploring the Hardness Mechanism of Hard Material MoBs[J]. Physical Experiment of College, 2019, 32(6): 13 -17 .
[8] XU Fei, XUE Xiaotian, SONG Wentao, CUI Ganwei, YAO Huimin, ZHU Jiangzhuan. Study on The Influence of Various Kinds of Vibration on System Stability in Holographic Experiment [J]. Physical Experiment of College, 2019, 32(6): 18 -20 .
[9] Huang Yuhong, Li Duyu, Liu Zhicun, Lu Baizuo, Hou Yunbo. Study on The Short-time Temperature Rise Rate of LED With Experimental Conditions [J]. Physical Experiment of College, 2019, 32(6): 21 -25 .
[10] Wu Yanda, Hu Shanshan, Yin Yuxiang, Chen Wenjuan, Fang Wenjing, ZHOU Jie. Simulation optimization and research of magnetorheological fluid disc brake based on COMSOL [J]. Physical Experiment of College, 2019, 32(6): 26 -31 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed