Please wait a minute...
大学物理实验, 2024, 37(4): 58-62     https://doi.org/10.14139/i.cnki.cn22-1228.2024.04.010
  本期目录 | 过刊浏览 | 高级检索 |
基于飞秒激光微加工的温度补偿型高灵敏度光纤光栅传感器的实验教学研究
李宏韬 1∗ ,刘雨轩 ,王伟胜 ,戴娇研 ,吕 亮 ,孙火姣 2
1.安徽大学 物理与光电工程学院,安徽 合肥 230601;2.皖西学院 电气与光电工程学院,安徽 六安 237012
Experimental Teaching Research on Temperature-CompensatedHigh-Sensitivity Optical Fiber Gratings SensorBased on Femtosecond Laser Micromachining
LI Hongtao1* ,LlU Yuxuan1,WANG Weisheng1,DAl Jiaoyan1,LU Liang1,SUN Huojiao2
下载:  PDF (1777KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

在传统的大学物理实验教学中,长周期光纤光栅的折射率灵敏度较低且温度灵敏度通常为正值,与布拉格光纤光栅相结合不能很好地实现温度串扰的消除。 因此,我们利用飞秒激光直写技术制备出一种微纳光纤布拉格光栅(mFBG)与微纳小长周期光纤光(SP?mFLPG)级联的温度补偿高灵敏度光纤光栅传感器。 这种传感器体积小巧、稳定性高,折射率灵敏度高达 759.02 nm/ RIU,同时具备温度补偿特性等优势。 对于本次传感器的制备实验教学,有助于本科基础教学授课,为创新性教学实验带来更多可能性,学生将参与微纳光纤器件的制作与测试实验,这将有助于他们提升动手能力、专注力以及科研素养。 更重要的是,学生们能够涉足创新性的光纤结构设计领域,从而激发其对新型光纤器件和传感应用的兴趣,为其未来学习和深造奠定坚实的基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李宏韬
刘雨轩
王伟胜
戴娇研
吕 亮
孙火姣
关键词:  微纳小长周期光纤光栅  微纳布拉格光纤光栅  飞秒激光直写技术  温度补偿     
Abstract: 

In conventional experimental teaching college physics , reported long-period fiber gratings ( LPFGs )had low refractive index sensitivity and normally possessed positive temperature sensitivity, and they couldn’ elfectively eliminate temperature crosstalk by combining them with fiber Bragg gratings( FBGs) .Herein , throughfemtosecond laser direct writing technology, we have fabricated a temperature-compensated high-sensitivityoptical fiber gratings sensor by cascading microfiber Bragg gratings( mFBG) with small-period microfiber longperiod gratings ( SP-mFLPG ). This sensor has merits of compact size, highly stable, high relractive index sensitivity of 759. 02 nm/RIU, and characteristic of temperature compensation. For such an experimentalteaching of sensor fabrication , it can contribute to undergraduate fundamental teaching, that offering morepossibilities for innovative teaching experiments. Students could take participate in experimental fabrication andmeasurement of micro/nano optical fiber devices, which could help them to enhance hands-on abilityconcentration ,and research literacy. More importantly , students can engage in innovative fiber-optic structuraldesign, and their interest of novel fiber devices and sensor applications can be sparked. lt can lay a solid foundation for their further studies and education.

Key words:  small-period microfiber long-period gratings    microfiber Bragg gratings    femtosecond laser directwriting technology    temperature compensation
               出版日期:  2024-08-25      发布日期:  2024-08-25      整期出版日期:  2024-08-25
ZTFLH:  O 436  
引用本文:    
李宏韬 , 刘雨轩 , 王伟胜 , 戴娇研 , 吕 亮 , 孙火姣 . 基于飞秒激光微加工的温度补偿型高灵敏度光纤光栅传感器的实验教学研究 [J]. 大学物理实验, 2024, 37(4): 58-62.
LI Hongtao , LlU Yuxuan, WANG Weisheng, DAl Jiaoyan, LU Liang, SUN Huojiao. Experimental Teaching Research on Temperature-CompensatedHigh-Sensitivity Optical Fiber Gratings SensorBased on Femtosecond Laser Micromachining . Physical Experiment of College, 2024, 37(4): 58-62.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/i.cnki.cn22-1228.2024.04.010  或          http://dawushiyan.jlict.edu.cn/CN/Y2024/V37/I4/58
[1] 赵金雨, 罗逸文, 何 晴 , 梁衍瑞 , 黎俊晨 , 翁嘉文 . 变栅距光栅的衍射效应与特性分析 [J]. 大学物理实验, 2024, 37(4): 43-50.
[2] 朱丽颖 , 刘 静 , 刘宁亮 , 易伟松 . 基于智能手机研究吉他弦线振动规律 [J]. 大学物理实验, 2024, 37(1): 80-84.
[3] 胡佳慧, 郑焕玲, 翁嘉文 , 杨初平 . 非相干照明单像素检测傅里叶频谱 [J]. 大学物理实验, 2023, 36(3): 31-35.
[4] 商紫怡, 于巾荔, 陈映君, 周兴玉, 洪许海. 基于 Mathematica 的偏振光现象动态仿真 [J]. 大学物理实验, 2023, 36(3): 95-101.
[5] 潘天辰, 张 然, 黄永政, 赵金龙, 罗锻斌 . 双蜡烛火焰振荡的纹影光学探究 [J]. 大学物理实验, 2023, 36(2): 46-49.
[6] 金远伟 , 赵 斌 , 吴庆春 . 单缝衍射法测量磁致伸缩系数 [J]. 大学物理实验, 2023, 36(2): 5-9.
[7] 涂余闽 , 曾钶 , 曾梦海 , 张朋波 , 彭勇 . 再现虹与霓演示装置的设计与研究 [J]. 大学物理实验, 2023, 36(1): 71-75.
[8] 牛彦彦. 光栅旋转对衍射角改变量及波长的影响 [J]. 大学物理实验, 2023, 36(1): 59-62.
[9] 罗天娇 , 吴幸锴 , 孙微微 , 侯丽华 . 基于Matlab的迈克尔逊微小位移测量 [J]. 大学物理实验, 2022, 35(5): 96-99.
[10] 郭前龙, 陈浩楠, 王惠临, 宋洪胜 . 液晶光栅的电光效应与衍射现象的研究 [J]. 大学物理实验, 2022, 35(5): 25-28.
[11] 郜洪云, 陈 哲, 黎 敏. 多模-单模结构光纤表面等离子体共振传感实验 [J]. 大学物理实验, 2022, 35(4): 20-23.
[12] 杨子轩, 王文权, 王子赟, 芮云军. 基于分光计的旋光仪搭建与溶液旋光度的测量 [J]. 大学物理实验, 2022, 35(3): 81-84.
[13] 袁浩洋, 谈 浩 , 李英豪, 谌 利 , 朱丽颖, 刘 泉, 邓海游 , 刘宁亮, 易伟松 . 基于迈克尔逊干涉仪和智能手机定量测量溶液折射率 [J]. 大学物理实验, 2022, 35(3): 94-98.
[14] 翟立朋 , 刘 悠 , 程 琳 , 常凯歌 , 张俊武 . 双耦合谐振子Fano共振特性的实验设计与研究 [J]. 大学物理实验, 2023, 36(6): 39-44.
[15] 谢鑫鑫 , 赖盛英, 王慧琴 , 闫 然 , 樊伟征 . 利用梯形液膜干涉法实现液体浓度的自动检测 [J]. 大学物理实验, 2023, 36(4): 10-16.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed