基于改进交织异算法的数据抗强干扰传输设计
庹忠曜 1 ,胡乃溪 2 ,黄洵桢 2 ,江 珊 3 ,吴润强 3∗
1.南京邮电大学 自动化学院、人工智能学院,江苏 南京 210023;2.南京邮电大学 通信与信息工程学院,江苏 南京 210023;3.南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京 210023
Design of Data Transmission Resistant to Strong lnterference Based on Improved Interleaving Algorithm
TUO Zhongyao1 ,HU Naixi2 ,HUANG Xunzhen2 ,JANG Shan3 , WU Runqiang3*
摘要
为解决集成电路因强干扰环境的干扰而导致的数据传输错误问题,实现在强干扰工业环境的良好通信。 基于纠错码可用来提高必要数据信号传输的完整性的原理,在目前现有的纠错码基础上进行改进与创新,提出一种交织异编解码方法。该织异编解码方法通过优化 UART 协议进行高可靠性传输,并使用 CRC校验码与可靠编码模块对传输数据进行检错与纠错,使集成系统更加适应复杂多变的工业环境。 最终以 AD 信号采集为例,对改进后的交织异算法进行了性能测试,证明该算法对于强干扰环境下数据的传输具有重要的检错与纠错作用。
关键词:
强干扰环境
纠错码
交织异算法
UART 协议
Abstract:
In order to address the issue of data transmission errors in integrated cireuits caused by stronginterferenee in industrial environments and to achieve reliable communication in such conditions,an improvedand innovative intereaving and coding/decoding method is proposed based on the principle that errolcorreetion codes can enhance the integrity of essential data signal transmission. This method optimizes the UART protocol for high-reliability transmission , and utilizes CRC checksums and reliable encoding modules todetect and correct transmission errors in the data, thereby enabling integrated systems to better adapt tocomplex and dynamic industrial environments.Perormance testing of the improved interleaving and decodingalgorithm is conducted using Al signal aequisition as an example , demonstrating the algorithm's significanterror detection and correction capabilities for data transmission in strongly interlered environments.
Key words:
strong interference environment
error correcting code
interleaving algorithm
UART protocol
出版日期: 2024-06-25
发布日期: 2024-06-25
整期出版日期: 2024-06-25
引用本文:
庹忠曜 , 胡乃溪 , 黄洵桢 , 江 珊 , 吴润强 .
基于改进交织异算法的数据抗强干扰传输设计
[J]. 大学物理实验, 2024, 37(3): 84-89.
TUO Zhongyao , HU Naixi , HUANG Xunzhen , JANG Shan, WU Runqiang.
Design of Data Transmission Resistant to Strong lnterference Based on Improved Interleaving Algorithm
. Physical Experiment of College, 2024, 37(3): 84-89.
链接本文:
http://dawushiyan.jlict.edu.cn/CN/10.14139/i.cnki.cn22-1228.2024.03.016
或
http://dawushiyan.jlict.edu.cn/CN/Y2024/V37/I3/84
[1]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[2]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[3]
WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing.
Theoretical and Experimental Research of A zimuthal-Radial Pendulum
[J]. Physical Experiment of College, 2020, 33(1): 1
-6
.
[4]
LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling
[J]. Physical Experiment of College, 2020, 33(1): 7
-9
.
[5]
DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi.
MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system
[J]. Physical Experiment of College, 2020, 33(1): 10
-16
.
[6]
MA Kun.
Experiment Study on the Measuring Young' s Modulus by Stretching
[J]. Physical Experiment of College, 2020, 33(1): 17
-20
.
[7]
FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou.
Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison
[J]. Physical Experiment of College, 2020, 33(1): 21
-24
.
[8]
LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli.
A New Method for Simple and Rapid Measurement of Refractive Index
[J]. Physical Experiment of College, 2020, 33(1): 25
-28
.
[9]
WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng.
Progress and Applications of Electron Spin Resonance in Biology
[J]. Physical Experiment of College, 2020, 33(1): 29
-33
.
[10]
CHEN Yingmo, SHEN Siyi, WANG Jie.
Study on the Characteristics of Silicon Photocells
[J]. Physical Experiment of College, 2020, 33(1): 34
-36
.
Viewed
Full text
Abstract
Cited
Shared
Discussed