Please wait a minute...
大学物理实验, 2024, 37(2): 32-34     https://doi.org/10.14139/i.cnki.cn22-1228.2024.02.007
  本期目录 | 过刊浏览 | 高级检索 |
基于电子平均自由程的金属纳米颗粒临界尺寸估算
吕庆荣 ,戴 鹏 ,李爱侠 ,冯双久
1.安徽大学 物理与光电工程学院,安徽 合肥 230601;2.安徽大学 材料科学与工程学院,安徽 合肥 230601
Estimation of Critical Size of Metal NanoparticlesBased on Electron Mean Free Path
LÜ Qingrong1 ,DAl Peng2,Ll Aixia1,FENG Shuangjiu2
下载:  PDF (742KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

基于金属价电子占据 k 空间体积与布里渊区体积之间的关系,求出费米球半径,导出电子平均自由程的计算公式。 以 Ag 和 Cu 为例计算出电子平均自由程,与其他方法计算结果一致。 当金属材料的几何尺度与电子平均自由程相当时,与之相关的物理性能会发生显著变化,从这个角度出发,用电子平均自由程尺度估算 Ag 和 Cu 的纳米尺寸临界值分别为 52 nm 和 39 nm。 这种计算思路同样适用于其他金属纳米材料。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕庆荣
戴 鹏
李爱侠
冯双久
关键词:  金属纳米颗粒  临界尺寸  电子平均自由程     
Abstract: 

Based on the relationship between the volume of metal valence electrons occupying k space and thevolume of the Brillouin zone , the radius of the Fermi sphere was calculated, and the formula for calculatingelectron mean free path was derived, Taking Ag and Cu as examples, the electron mean free path wascalculated, which was consistent with the results obtained by other methods.When the geometric scale of metalmaterials was equivalent to the electron mean firee path , the physical properties related to it would undergo significant changes, From this perspective ,the critical values of Ag and Cu nano size were estimated using theaverage free path seale of electrons to be 52 nm and 39 nm , respectively.This caleulation approach was alsoapplicable to other metal nanomaterials.

Key words:  metal nanoparticles    critical dimensions    electron mean free path
                    发布日期:  2024-04-25     
ZTFLH:  O 488  
引用本文:    
吕庆荣, 戴 鹏 , 李爱侠 , 冯双久 . 基于电子平均自由程的金属纳米颗粒临界尺寸估算 [J]. 大学物理实验, 2024, 37(2): 32-34.
LÜ Qingrong , DAl Peng, Ll Aixia, FENG Shuangjiu. Estimation of Critical Size of Metal NanoparticlesBased on Electron Mean Free Path . Physical Experiment of College, 2024, 37(2): 32-34.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/i.cnki.cn22-1228.2024.02.007  或          http://dawushiyan.jlict.edu.cn/CN/Y2024/V37/I2/32
No related articles found!
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed