一种新型大气细颗粒物湿法捕集装置
林镇鹏 1 ,朱明慧 1 ,叶晓欣 1 ,陈嘉珍 1 ,李建洲 1 ,彭力 1,2*
1.华南师范大学 物理与电信工程学院,广东 广州 510006;2.华南师大(清远)科技创新研究院有限公司,广东 清远 511517
A New Type of Wet Capture Device for Atmospheric Fine Particulate Matter
LIN Zhenpeng 1 ,ZHU Minghui 1 ,YE Xiaoxin 1 ,CHEN Jiazhen 1 ,LI Jianzhou 1 ,PENG Li 1,2*
摘要
对环境空气中的颗粒进行捕获,是大气颗粒物污染防治工作的基础。基于湿法捕集理论,设计并搭建了一套新型大气细颗粒物湿法捕集装置。利用该装置对大气颗粒物进行现场采样实验,用动态光散射技术对获取的颗粒物样品溶液进行测试,通过样品溶液的散射光光子数来表征样品的浓度。实验结果表明,此装置能对大气细颗粒物样品实现有效的捕获,捕集效率随转子转速的增大而增大,随着液体流速增大呈先增大后减小的趋势,并且在液体流速为 600 mL/min 时,装置捕集性能达到峰值。
关键词:
大气细颗粒物
湿法捕集装置
散射光光子数
Abstract:
The capture of particles in the ambient air is the basis for the prevention and control of atmospheric particulate pollution.Based on the theory of wet trapping,a new set of wet trapping devices for atmospheric fine particulate matter is designed and built. The device is used to conduct on-site sampling experiments on atmospheric particles,and the obtained particle sample solution is tested by dynamic light scattering technology.The concentration of the sample is characterized by the number of scattered light photons of the sample solution.The experimental results show that the device built can effectively capture atmospheric fine
particle samples.The capture efficiency increases with the increase of rotor speed,and firstly increases and then decreases with the increase of liquid flow rate.When the liquid flow rate is 600 mL/min,the device has the best capture performance.
Key words:
atmospheric fine particulate matter
wet capture device
scattered light photon number
发布日期: 2023-08-25
引用本文:
林镇鹏, 朱明慧 , 叶晓欣, 陈嘉珍 , 李建洲, 彭 力.
一种新型大气细颗粒物湿法捕集装置
[J]. 大学物理实验, 2023, 36(4): 57-61.
LIN Zhenpeng , ZHU Minghui , YE Xiaoxin , CHEN Jiazhen, LI Jianzhou , PENG Li.
A New Type of Wet Capture Device for Atmospheric Fine Particulate Matter
. Physical Experiment of College, 2023, 36(4): 57-61.
链接本文:
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2023.04.012
或
http://dawushiyan.jlict.edu.cn/CN/Y2023/V36/I4/57
[1]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[2]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[3]
WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing.
Theoretical and Experimental Research of A zimuthal-Radial Pendulum
[J]. Physical Experiment of College, 2020, 33(1): 1
-6
.
[4]
LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling
[J]. Physical Experiment of College, 2020, 33(1): 7
-9
.
[5]
DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi.
MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system
[J]. Physical Experiment of College, 2020, 33(1): 10
-16
.
[6]
MA Kun.
Experiment Study on the Measuring Young' s Modulus by Stretching
[J]. Physical Experiment of College, 2020, 33(1): 17
-20
.
[7]
FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou.
Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison
[J]. Physical Experiment of College, 2020, 33(1): 21
-24
.
[8]
LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli.
A New Method for Simple and Rapid Measurement of Refractive Index
[J]. Physical Experiment of College, 2020, 33(1): 25
-28
.
[9]
WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng.
Progress and Applications of Electron Spin Resonance in Biology
[J]. Physical Experiment of College, 2020, 33(1): 29
-33
.
[10]
CHEN Yingmo, SHEN Siyi, WANG Jie.
Study on the Characteristics of Silicon Photocells
[J]. Physical Experiment of College, 2020, 33(1): 34
-36
.
Viewed
Full text
Abstract
Cited
Shared
Discussed