Please wait a minute...
大学物理实验, 2022, 35(4): 46-51     https://doi.org/10.16039/j.cnki.cn22-1228.2022.04.011
  本期目录 | 过刊浏览 | 高级检索 |
C3N4 /CZTS 半导体异质结的物理机制及其光催化性能的研究
兰承武1,谷禹霖2
1.吉林化工学院 材料科学与工程学院,吉林 吉林 132022; 2.吉林大学 物理学院,吉林 长春 130012
Physical Mechanism of C3N4 /CZTS Heterojunction and Study on its Photocatalytic Activity
LAN Chengwu1,GU Yulin2
下载:  PDF (2849KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

: 六价铬对环境有长期的危险性,人体摄入可能造成遗传性基因缺陷甚至癌症。目前光催化降解六价铬被认为是一种廉价而快速的方法,C3N4 是一种具有平面形的类石墨烯材料,具有良好的光催化性能,通过复合铜锌锡硫( Cu2ZnSnS4 ) ,得到了具有优异降解性能的复合材料,在5 min 时降解率达到了95.2%,相较于单一的C3N4和Cu2ZnSnS4 分别提升了4.83 和 1.4 倍。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
兰承武
谷禹霖
关键词:  光催化  六价铬降解  复合材料     
Abstract: 

Hexavalent chromium poses long-term environmental risks and can cause genetic defects and even cancer in humans,whereas trivalent chromium does not.At present,photocatalytic degradation of hexavalent chromium is considered as a cheap and rapid method. C3N4 is a planar graphene-like material with good photocatalytic performance.By composite copper,zinc,tin and sulfur ( Cu2ZnSnS4 ) ,the composite material with excellent degradation performance was obtained,and the degradation rate reached 95.2% at 5 min.Compared with the single C3N4 and Cu2ZnSnS4,the increase was 4.83 and 1.4 times.

Key words:  photocatalytic    hexavalent chromium degradation    composite materials
               出版日期:  2022-08-25      发布日期:  2022-08-25      整期出版日期:  2022-08-25
ZTFLH:  O 643  
引用本文:    
兰承武, 谷禹霖. C3N4 /CZTS 半导体异质结的物理机制及其光催化性能的研究 [J]. 大学物理实验, 2022, 35(4): 46-51.
LAN Chengwu, GU Yulin. Physical Mechanism of C3N4 /CZTS Heterojunction and Study on its Photocatalytic Activity . Physical Experiment of College, 2022, 35(4): 46-51.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1228.2022.04.011  或          http://dawushiyan.jlict.edu.cn/CN/Y2022/V35/I4/46
[1] 杨 雪, 赫明威, 赵国明. 星际分子硫代甲醛 H2CS 的形成机理研究 [J]. 大学物理实验, 2022, 35(2): 31-34.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed