基于现实迷宫地形的电脑鼠设计
吴润强 1 ,庹忠曜 2 ,刘文杰 3 ,项璟晨 3 ,孙科学 1∗
1.南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京 210023;2.南京邮电大学 自动化学院、人工智能学院,江苏 南京 210023;3.南京邮电大学 通信与信息工程学院,江苏 南京 210023
Micromouse Design Based on Realistic Maze Terrain
WU Runqiang1 ,TUO Zhongyao2 ,LIU Wenjie3 ,XIANG Jingchen3 ,SUN Kexue1*
摘要
针对现阶段电脑鼠计算量庞大且不适用于现实迷宫地形的问题,设计出一款可在现实迷宫地形下自动寻找出口的电脑鼠。 该电脑鼠基于超声波测距与传统迷宫算法原理,适用于岔路数量与道路宽度不定、多死路弯道并且相对较大的迷宫地形,具有适应性强、计算量小、兼容性和可塑性强等优点,对于现实迷宫地形下的自动应用具有一定研究价值。
关键词:
电脑鼠
超声波测距
迷宫算法
自动应用
Abstract:
Aiming at the problem that the current computer mouse has a large amount of computation and is notsuitable for the real maze terrain ,a computer mouse that can automatically find the exit in the real maze terrain isdesigned. Based on the principle of ultrasonic ranging and traditional maze algorithm, the computer mouse isapplicable to the maze terrain where the number of forks and the width of the road are uncertain ,there are manydead turns and relatively large.lt has the advantages of strong adaptability , small amount of computation , strongcompatibility and plasticity ,and has certain research value for the automatic application in the real maze terrain.
Key words:
micromouse
ultrasonic ranging
maze algorithm
automatic application
出版日期: 2023-06-25
发布日期: 2023-06-25
整期出版日期: 2023-06-25
引用本文:
吴润强, 庹忠曜, 刘文杰, 项璟晨, 孙科学 . 基于现实迷宫地形的电脑鼠设计
[J]. 大学物理实验, 2023, 36(3): 78-85.
WU Runqiang, TUO Zhongyao, LIU Wenjie, XIANG Jingchen, SUN Kexue. Micromouse Design Based on Realistic Maze Terrain
. Physical Experiment of College, 2023, 36(3): 78-85.
链接本文:
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2023.03.016
或
http://dawushiyan.jlict.edu.cn/CN/Y2023/V36/I3/78
[1]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[2]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[3]
WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing.
Theoretical and Experimental Research of A zimuthal-Radial Pendulum
[J]. Physical Experiment of College, 2020, 33(1): 1
-6
.
[4]
LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling
[J]. Physical Experiment of College, 2020, 33(1): 7
-9
.
[5]
DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi.
MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system
[J]. Physical Experiment of College, 2020, 33(1): 10
-16
.
[6]
MA Kun.
Experiment Study on the Measuring Young' s Modulus by Stretching
[J]. Physical Experiment of College, 2020, 33(1): 17
-20
.
[7]
FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou.
Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison
[J]. Physical Experiment of College, 2020, 33(1): 21
-24
.
[8]
LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli.
A New Method for Simple and Rapid Measurement of Refractive Index
[J]. Physical Experiment of College, 2020, 33(1): 25
-28
.
[9]
WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng.
Progress and Applications of Electron Spin Resonance in Biology
[J]. Physical Experiment of College, 2020, 33(1): 29
-33
.
[10]
CHEN Yingmo, SHEN Siyi, WANG Jie.
Study on the Characteristics of Silicon Photocells
[J]. Physical Experiment of College, 2020, 33(1): 34
-36
.
Viewed
Full text
Abstract
Cited
Shared
Discussed