Please wait a minute...
大学物理实验, 2022, 35(3): 75-80     https://doi.org/10.14139/j.cnki.cn22-1228.2022.03.016
  本期目录 | 过刊浏览 | 高级检索 |
基于传感器的液体粘滞系数测量装置设计
秦之斌,李嘉蕊,张 斯,周 芸*,张 华
辽宁师范大学 物理与电子技术学院,辽宁 大连 116029
Design of Measuring Device for Liquid Viscosity Coefficient Based on Sensor
QIN Zhibin,LI Jiarui,ZHANG Sibo,ZHOU Yun*, ZHANG Hua
下载:  PDF (1671KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

基于目前传统方法测量液体粘滞系数存在重复率低、误差大、测量范围小等问题,采用单片机、金属传感器对现有液体粘滞系数测量装置进行了改进。通过金属传感器感应金属小球,配合单片机计时并显示时间结果,应用计算机计算液体粘滞系数。实验结果表明,改进后的测量装置测量过程直观、准确,测量计算所得粘滞系数误差较小,且适用于测量不透明液体粘滞系数,拓宽了液体的检测范围。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦之斌
李嘉蕊
张 斯
周 芸
张 华
关键词:  金属传感器  液体粘滞系数  落球法  不透明液体     
Abstract: 

Based on the existing problems in the traditional measurement method of liquid viscosity coefficient,like low repetition rate,large error and small measurement range,it adopts single chip microcomputer and metalsensor to improve the existing device. The metal sensor senses the metal ball,cooperates with the single chipmicrocomputer to time and display the time results,and the computer is used to calculate the liquid viscosity coefficient.The experimental results show that the measurement process of the improved measuring device isintuitive and accurate,the error of the viscosity coefficient measured and calculated is small,and it is suitable for measuring the viscosity coefficient of opaque liquid,which widens the detection range of liquid.

Key words:  metal sensor    liquid viscosity coefficient    falling ball method    opaque liquid
               出版日期:  2022-06-25      发布日期:  2022-06-25      整期出版日期:  2022-06-25
ZTFLH:  O 4-33  
引用本文:    
秦之斌, 李嘉蕊, 张 斯, 周 芸, 张 华. 基于传感器的液体粘滞系数测量装置设计[J]. 大学物理实验, 2022, 35(3): 75-80.
QIN Zhibin, LI Jiarui, ZHANG Sibo, ZHOU Yun, ZHANG Hua. Design of Measuring Device for Liquid Viscosity Coefficient Based on Sensor . Physical Experiment of College, 2022, 35(3): 75-80.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2022.03.016  或          http://dawushiyan.jlict.edu.cn/CN/Y2022/V35/I3/75
[1] 郑世磊, 初 琦 , 苗永平 . 浮球法测量液体的粘滞系数 [J]. 大学物理实验, 2022, 35(3): 47-51.
[2] 左学勤, 王章银. 落球法测量液体黏滞系数实验仪器的新研究 [J]. 大学物理实验, 2022, 35(2): 64-68.
[3] 毛爱华, 蔡禄, 鞠向明. 一种三维激光定位液体粘滞系数测量装置研制 [J]. 大学物理实验, 2020, 33(1): 69-71.
[4] 马玉婷, 燕振刚, 马小军, 屠鹏, 边红霞. 对落球法液体粘滞系数测定仪定位架的改进 [J]. 大学物理实验, 2019, 32(6): 92-95.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed