Please wait a minute...
大学物理实验, 2022, 35(2): 117-120     https://doi.org/10.14139/j.cnki.cn22-1228.2022.02.025
  本期目录 | 过刊浏览 | 高级检索 |
基于智能手机测量液体黏滞系数的方法研究
曲  阳,曹显莹*,曹国军,何海霞 #br#
哈尔滨石油学院,黑龙江 哈尔滨 150000
Research on the Method of Measuring Liquid Viscosity Coefficient Based on Smartphone
QU Yang , CAO Xianying , CAO Guojun , HE Haixia
下载:  PDF (7297KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

基于阻尼振动的原理,利用智能手机测量弹簧振子的加速度,通过阻尼振动的动力学方程计算出金属球做阻尼振动时液体的阻尼系数和黏滞系数,并将黏滞系数测量值与理论值进行比较,相对误差为 0.39%,进一步论证了本实验方案的可行性。 与传统方案相比,基于智能手机的液体黏滞系数测量方法操作简单且趣味性强,同时降低了传统实验方法的仪器成本,对物理实验的线上教学具有一定的参考意义。


服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曲  阳
曹显莹
曹国军
何海霞
关键词:  阻尼振动  加速度传感器  黏滞系数  弹簧振子     
Abstract: 

Based on the principle of damped vibration,the acceleration of spring vibrator is measured by smartphone.The damping coefficient and viscosity coefficient of liquid are calculated by the general solution of dynamic equation of damped vibration.The measured value of viscosity coefficient is compared with the theoretical value ,the relative error is 0.39 percent.The feasibility of this experimental scheme is demonstrated Compared with the traditional scheme,the method based on smartphone is easy to operate and interesting. Meanwhile,it reduces the instrument cost of traditional experimental methods,which has a certain reference significance for online teaching of physical experiments.

Key words:  damped vibration    acceleration sensor    viscositycoefficient    spring vibrator
               出版日期:  2022-04-25      发布日期:  2022-04-25      整期出版日期:  2022-04-25
ZTFLH:  O-433  
引用本文:    
曲  阳, 曹显莹, 曹国军, 何海霞. 基于智能手机测量液体黏滞系数的方法研究 [J]. 大学物理实验, 2022, 35(2): 117-120.
QU Yang , CAO Xianying , CAO Guojun , HE Haixia. Research on the Method of Measuring Liquid Viscosity Coefficient Based on Smartphone . Physical Experiment of College, 2022, 35(2): 117-120.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2022.02.025  或          http://dawushiyan.jlict.edu.cn/CN/Y2022/V35/I2/117
[1] 左学勤, 王章银. 落球法测量液体黏滞系数实验仪器的新研究 [J]. 大学物理实验, 2022, 35(2): 64-68.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed