Please wait a minute...
大学物理实验, 2022, 35(2): 49-54     https://doi.org/10.14139/j.cnki.cn22-1228.2022.02.011
  本期目录 | 过刊浏览 | 高级检索 |
无透镜智能显微成像装置设计
曾周杰,于 雯,仇浩谦,陈文娟* ,张立红
中国石油大学(华东) 理学院,山东 青岛266580
Design of Lensless Intelligent Microscope
ZENG Zhoujie , YU Wen , QIU Haoqian , CHEN Wenjuan ZHANG Lihong
下载:  PDF (1211KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为解决传统显微系统因固定分辨率?视场积而无法同时实现高分辨率大视场成像的问题,无透镜成像技术应运而生,但现有无透镜成像装置自动化、智能化程度低,无法实现自适应成像。 基于此,设计了一套无透镜智能显微成像装置,该装置包括无透镜成像模块、自适应位移台及电脑端上位机。其不仅能够在大视场下实现较高分辨率成像,且配合自适应位移台能够实现成像视野的自适应调整。结构简单、无像差干扰、自动化程度高,能够满足教学演示及演示实验需要。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  无透镜成像  自适应调整  角谱法  计算成像     
Abstract: 

In order to solve the problem that traditional microscopy systems cannot achieve high-resolution and large-field imaging at the same time due to the fixed resolution-field product, lensless imaging technology emerged at the historic moment.However,the existing lensless imaging devices are low in automation and intelligence,and unable to achieve adaptive imaging.In response to the above problems,a lensless intelligent microscopie imaging device was designed,which includes a lensless imaging module,an adaptive displacement stage and a computer-side host computer.lt can not only achieve higher resolution imaging under a large field of view,but also can achieve adaptive adjustment of the imaging field of view with an adaptive stage.lt has a simple structure. no aberration interference, and high degree of automation, which can meet the needs of teaching demonstrations and demonstration experiments.

Key words:  lensless imaging    adaptive adjustment    angular spectrum method    computational imaging
               出版日期:  2022-04-25      发布日期:  2022-04-25      整期出版日期:  2022-04-25
ZTFLH:  O 439  
引用本文:    
曾周杰, 于 雯, 仇浩谦, 陈文娟, 张立红. 无透镜智能显微成像装置设计 [J]. 大学物理实验, 2022, 35(2): 49-54.
ZENG Zhoujie , YU Wen , QIU Haoqian , CHEN Wenjuan ZHANG Lihong. Design of Lensless Intelligent Microscope . Physical Experiment of College, 2022, 35(2): 49-54.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2022.02.011  或          http://dawushiyan.jlict.edu.cn/CN/Y2022/V35/I2/49
[1] 马海霞, 王吉明, 路元刚, 杨雁南. Zemax在光学系统球差测量中的应用 [J]. 大学物理实验, 2019, 32(6): 100-103.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed