基于 FPGA 的便携式PWM 方波信号发生器
任青颖 1,2∗ ,庹忠曜 3 ,黄洵桢 4 ,李智禺 2 ,张贤宇 2
1.南京邮电大学 工程实验教学部,江苏 南京 210023;2.南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京 210023;3.南京邮电大学 自动化学院 人工智能学院,江苏 南京 210023;4.南京邮电大学 通信与信息工程学院,江苏 南京 210023
Portable PWM Signal Generator Based on FPGA
REN Qingying1,2* ,TUO Zhongyao3 , Huang Xunzhen4 , LI Zhiyu2 ,ZHANG Xianyu2
摘要
对于移动性设备的信号调控问题,传统的 PWM 信号发生器存在精准度低、便携性差等问题。 针对相关现状,特基于 FPGA,设计出一款便携式 PWM 信号发生器,可实现占空比以 1%步长可调、频率通过四个按键分别控制实现 100 Hz、1kHz、10 μs 的最小分辨率在数码管上进行显示。 实验结果表明,该系统电路产生的信号稳定可靠,还具有精度高、便携性好等优点。
关键词:
PWM
FPGA
占空比
设备调测
Abstract:
Traditional PWM signal generators have problems with low accuracy and poor portability in signaregulation for mobile devices. In response to the current situation, a portable PWM signal generator has beerdesigned based on FPGA, which can achieve a duty cycle adjustable in 1% 6 step size and four frequeney pulswidth adjustable square wave signal generators of 100 Hz, 1 kHz,10 kHz, 100 kHz and can be controlled by foubuttons , and finally displayed on a digital tube with the minimum resolution. The experimental results show thathe signal generated by the system circuit is stable and reliable, and it also has advantages such as higlaccuracy and good portability.
Key words:
PWM
FPGA
duty cycle
equipment debugging
出版日期: 2024-08-25
发布日期: 2024-08-25
整期出版日期: 2024-08-25
引用本文:
任青颖 , 庹忠曜 , 黄洵桢 , 李智禺 , 张贤宇 .
基于 FPGA 的便携式PWM 方波信号发生器
[J]. 大学物理实验, 2024, 37(4): 108-114.
REN Qingying, TUO Zhongyao , Huang Xunzhen , LI Zhiyu, ZHANG Xianyu.
Portable PWM Signal Generator Based on FPGA
. Physical Experiment of College, 2024, 37(4): 108-114.
链接本文:
http://dawushiyan.jlict.edu.cn/CN/10.14139/i.cnki.cn22-1228.2024.04.019
或
http://dawushiyan.jlict.edu.cn/CN/Y2024/V37/I4/108
[1]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[2]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[3]
WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing.
Theoretical and Experimental Research of A zimuthal-Radial Pendulum
[J]. Physical Experiment of College, 2020, 33(1): 1
-6
.
[4]
LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling
[J]. Physical Experiment of College, 2020, 33(1): 7
-9
.
[5]
DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi.
MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system
[J]. Physical Experiment of College, 2020, 33(1): 10
-16
.
[6]
MA Kun.
Experiment Study on the Measuring Young' s Modulus by Stretching
[J]. Physical Experiment of College, 2020, 33(1): 17
-20
.
[7]
FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou.
Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison
[J]. Physical Experiment of College, 2020, 33(1): 21
-24
.
[8]
LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli.
A New Method for Simple and Rapid Measurement of Refractive Index
[J]. Physical Experiment of College, 2020, 33(1): 25
-28
.
[9]
WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng.
Progress and Applications of Electron Spin Resonance in Biology
[J]. Physical Experiment of College, 2020, 33(1): 29
-33
.
[10]
CHEN Yingmo, SHEN Siyi, WANG Jie.
Study on the Characteristics of Silicon Photocells
[J]. Physical Experiment of College, 2020, 33(1): 34
-36
.
Viewed
Full text
Abstract
Cited
Shared
Discussed