Please wait a minute...
大学物理实验, 2025, 38(5): 18-22     https://doi.org/10.14139/j.cnki.cn22-1228.2025.05.004
  本期目录 | 过刊浏览 | 高级检索 |
电极半径对正交电磁场中电子运动的影响
苏亚凤 1* ,陈贺胜 2,王兴#br#
1.西安交通大学 物理学院,陕西 西安 710049;2.扬州大学 物理科学与技术学院,江苏 扬州225009
Influence of Electrode Radius on Electron Motion in Orthogonal Electromagnetic Fields
SU Yafeng 1* ,CHEN Hesheng 2 ,WANG Xing 1
1.School of Physics,Xi'an Jiaotong University,Xi'an 710049,China;2.College of Physics Science and Technology,Yangzhou
University,Yangzhou 225009,China
下载:  PDF (2201KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用四阶龙格库塔法数值计算了正交电磁场中不同阴极半径和阳极半径下的电子运动轨迹。计算结果表明:当阴极半径较小的时候,电子做类“8”字旋转曲线运动,而当阴极半径较大时,则呈现近似半圆形弹跳运动行为;阴极半径越大,电子的运动曲线在阳极附近的曲率半径越大;阳极半径越大,电子的运动曲线在靠近阳极处的曲线曲率半径越小。此数值模拟实验计算既直观展示了电子的运动行为,又弥补了实体实验在控制参量变化上的局限性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏亚凤
陈贺胜
王 兴
关键词:  龙格库塔法  电子运动  阴极半径    
Abstract: The fourth-order Runge-Kutta method is used to calculate the trajectories of electrons under different cathode and anode radii in orthogonal electromagnetic fields.The calculation results show that when the cathode radius is small,the electrons perform a "figure 8" rotation curve motion,and when the cathode radius is large,it shows an approximate semicircular bounce motion behaviour.The larger the cathode radius,the greater the radius of curvature of the electron's motion curve near the anode.The larger the anode radius,the smaller the radius of curvature of the curve of the electron near the anode.This numerical simulation experiment not only visually shows the motion behaviour of electrons,but also makes up for the limitations of solid experiments in controlling parameter changes.
Key words:  Runge-kutta method    electron motion    cathode radius
               出版日期:  2025-10-25      发布日期:  2025-10-25      整期出版日期:  2025-10-25
ZTFLH:  TN 123  
基金资助: 西安交通大学重点项目(24JF-JC2)
引用本文:    
苏亚凤, 陈贺胜, 王 兴. 电极半径对正交电磁场中电子运动的影响[J]. 大学物理实验, 2025, 38(5): 18-22.
SU Yafeng, CHEN Hesheng , WANG Xing . Influence of Electrode Radius on Electron Motion in Orthogonal Electromagnetic Fields. Physical Experiment of College, 2025, 38(5): 18-22.
链接本文:  
https://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2025.05.004  或          https://dawushiyan.jlict.edu.cn/CN/Y2025/V38/I5/18
[1] 陈永生 , 史新伟. 光电效应过程中光电子运动轨迹的模拟 [J]. 大学物理实验, 2023, 36(5): 86-89.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed