光纤位移传感器的理论和实验研究
刘龙江 1* ,胡德一 1** ,温和安 1** ,李佳慧 1** ,洪雅悦 1** ,牛文喆 2**
1.河南工业大学 物理与新能源学院,河南 郑州 450001;2.河南工业大学 信息科学与工程学院,河南 郑州450001
Theoretical and Experimental Research on Fiber Optic Displacement Sensor
LIU Longjiang 1* ,HU Deyi 1 ,WEN Hean 1 ,LI Jiahui 1 ,HONG Yayue 1 ,NIU Wenzhe 2
1.School of Physics and Advanced Energy,Henan University of Technology,Zhengzhou 450001,China;2.College of Information Science and Engineering,Henan University of Technology,Zhengzhou 450001,China
摘要
针对出射光场的光强分布是均匀分布和高斯分布两种情形,推导出了传感器输出量与位移之间的定量关系,建立了光纤位移传感器的理论模型,并对该模型进行了仿真分析。采用铁、铜、铝和镜面贴纸等材料制备反射面,通过实验验证了理论模型的有效性,为制作光纤传感器和实验教学提供理论依据。
关键词:
光纤位移传感器
均匀分布
高斯分布
位移
Abstract:
For the two cases of uniform and Gaussian distributions of light intensity in the emitted light field,a quantitative relationship between the sensor output and displacement was derived.Subsequently,a theoretical model of the fiber optic displacement sensor was established,and this model was subjected to simulation and analysis.Reflective surfaces were fabricated using materials such as iron,copper,aluminum,and mirror stickers.
Through experimental verification,the effectiveness of the theoretical model was validated. This research provides a theoretical foundation for the development of fiber optic sensors and for experimental teaching in
relevant academic fields.
Key words:
fiber optic displacement sensor
uniform distribution
gaussian distribution
displacement
出版日期: 2025-10-25
发布日期: 2025-10-25
整期出版日期: 2025-10-25
基金资助:
河南工业大学青年骨干教师培育计划(2021);理学院本科教学教研类项目(lxyjy202423)
引用本文:
刘龙江, 胡德一, 温和安, 李佳慧, 洪雅悦, 牛文喆.
光纤位移传感器的理论和实验研究
[J]. 大学物理实验, 2025, 38(5): 1-6.
LIU Longjiang, HU Deyi , WEN Hean, LI Jiahui, HONG Yayue, NIU Wenzhe.
Theoretical and Experimental Research on Fiber Optic Displacement Sensor
. Physical Experiment of College, 2025, 38(5): 1-6.
链接本文:
https://dawushiyan.jlict.edu.cn/CN/10,14139/j.cnki.cn22-1228.2025.05.001
或
https://dawushiyan.jlict.edu.cn/CN/Y2025/V38/I5/1
[1]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[2]
. [J]. Physical Experiment of College, 2020, 33(1): 0
.
[3]
WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing.
Theoretical and Experimental Research of A zimuthal-Radial Pendulum
[J]. Physical Experiment of College, 2020, 33(1): 1
-6
.
[4]
LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling
[J]. Physical Experiment of College, 2020, 33(1): 7
-9
.
[5]
DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi.
MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system
[J]. Physical Experiment of College, 2020, 33(1): 10
-16
.
[6]
MA Kun.
Experiment Study on the Measuring Young' s Modulus by Stretching
[J]. Physical Experiment of College, 2020, 33(1): 17
-20
.
[7]
FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou.
Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison
[J]. Physical Experiment of College, 2020, 33(1): 21
-24
.
[8]
LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli.
A New Method for Simple and Rapid Measurement of Refractive Index
[J]. Physical Experiment of College, 2020, 33(1): 25
-28
.
[9]
WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng.
Progress and Applications of Electron Spin Resonance in Biology
[J]. Physical Experiment of College, 2020, 33(1): 29
-33
.
[10]
CHEN Yingmo, SHEN Siyi, WANG Jie.
Study on the Characteristics of Silicon Photocells
[J]. Physical Experiment of College, 2020, 33(1): 34
-36
.
Viewed
Full text
Abstract
Cited
Shared
Discussed