Please wait a minute...
大学物理实验, 2025, 38(3): 94-99     https://doi.org/10.14139/j.cnki.cn22-1228.2025.03.018
  本期目录 | 过刊浏览 | 高级检索 |
基于 MindSpore 的人脸门禁系统设计
吴润强 ,崔景程 ,黄洵桢 ,李芙蓉 ,任青颖 1,3 ,孙科学 1,3∗
1.南京邮电大学 工程实验教学部,江苏 南京 210023;2.南京邮电大学 通信与信息工程学院,江苏 南京 210023;3.南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京210023
Design of Facial Access Control System Based on Mind Spore
WU Rungiang1,CUl Jingcheng2,HUANG Xunzhe2,Ll FurongREN3,Qingying1,3*.SUN Kexue1,3*
1、Engineering Experimental Teaching lepartment, Nanjing University of Posls and Telecommunications, Nanjing, Jiangsu2 10023 ,China;2.School of Communication and information Engineering, Nanjing University of Posts and Telecommunications.Nanjing, Jiangsu 210023, China; 3. School of Electronic and Optical Engineering, College of Flexible Electronics ( Future Technology ) , Nanjing University of Poets and Telecommunications, Nanjing.Jiangs 210023 , China
下载:  PDF (7144KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

近年来,人脸识别技术因无接触、高精度和安全性在门禁系统中广泛应用,但在性能优化、算法选择和数据处理方面仍面临挑战。 本研究基于华为昇腾的 MindSpore 平台,比较了人脸识别中的标定与训练算法,发现 dlib 在标定精度和鲁棒性上优于 OpenCV。 最终选择 dlib 进行特征点标定,并结合ResNet 模型对多视角人脸数据集进行特征提取和分类训练。 系统利用树莓派 4B 和 Arduino UNO 开发板,通过控制红外摄像头实现图像采集与处理,具备多目标识别、访客管理和可视化 UI 功能。 该研究为门禁系统智能化升级提供了高效可靠的解决方案,验证了 MindSpore 在小型嵌入式系统中的应用潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  MindSpore  人脸门禁  深度学习  人工智能     
Abstract: 

ln recent years , with the rapid development of artificial intelligence and deep learning technologies.facial recognition technology has been widely applied in aecess control systems due to its advantages ofcontaetless operation , high-precision recognition, and strong security.However,existing facial recognition accesscontrl systems still face umerous challenges in perormanee optimization , algorithm seleetion, and dataprocessing.These inelude balancing aecuracy and response speed, achieving effieient operation on resouree-constrained hardware devices , and ensuring data privacy and system reliability,'To address these issues , thisstudy , based on Huawei 's Aseend-developed MindSpore platform, conducts a comparative analysis of faciallandmarking and training algorithms, foeusing on the advantages and disadvantages of OpenCV and dlib infaeial landmarking. Experimental results indieate that dlib ofers superior accuracy and robustness inlandmarking,Therefore, dlib is used for initial facial feature point deteetion, and the ResNet deep leamingmodel is employed for deep feature extraction and classification training on multi-view facial datasets. Forhardware implementation ,the system utilizes Raspberry Pi 4B and Arduino tiNO development boards , with theML.X90614 infrared camera for real-time image acquisition and processing,The system is further enhaneed withmuli-target recognition , visitor aecess management ,and a visualized (jl design ,resulting in a high-perormancefacial recognition access control system,The findings of this study provide an effcient and reliable solution forthe intelligent upgrading of aeeess contrl systems and further validate the practical application potential ofMindSpore in small-scale embedded systems.

Key words:  MindSpore    facial aecess control    deep learning    AI plus
               出版日期:  2025-06-25      发布日期:  2025-06-25      整期出版日期:  2025-06-25
ZTFLH:  TP 18  
基金资助: 

国家自然科学基金青年基金(61904089);江苏省高等教育教改研究课题(2023JSJG433);南京邮电大学研究生教育教学改革课题(JGKT24_XK05);南京邮电大学教学改革项目(JG0204JX52);南京邮电大学大学生创新创业训练计划项目(CXXZD2024023,CXXZD2024036,CXXZD2024043);2024 年江苏省高校实验室研究会研究重点课题(GS2024ZD08);2022年南京邮电大学实验室工作研究重点课题(2022XSG04)

引用本文:    
吴润强 , 崔景程, 黄洵桢 , 李芙蓉 , 任青颖 , 孙科学 . 基于 MindSpore 的人脸门禁系统设计 [J]. 大学物理实验, 2025, 38(3): 94-99.
WU Rungiang, CUl Jingcheng, HUANG Xunzhe, Ll FurongREN Qingying.SUN Kexue. Design of Facial Access Control System Based on Mind Spore . Physical Experiment of College, 2025, 38(3): 94-99.
链接本文:  
https://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2025.03.018  或          https://dawushiyan.jlict.edu.cn/CN/Y2025/V38/I3/94
[1] 塔 拉 . 大学物理静电场模拟实验的教学方法改进 [J]. 大学物理实验, 2025, 38(3): 113-118.
[2] 彭 妙 , 黄志越, 段 显, 罗茗峰, 刘 佳, 钟宏华. 深度学习算法在三维亥姆霍兹线圈磁场测量中的应用探索 [J]. 大学物理实验, 2025, 38(2): 46-52.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed