Please wait a minute...
大学物理实验, 2025, 38(2): 64-69     https://doi.org/10.14139/j.cnki.en22-228.2025.02.012
  本期目录 | 过刊浏览 | 高级检索 |
基于LM算法改进 BP 神经网络的薄膜电阻高精度测量
张 钰 1,王琰 1 ,彭正凤 2 ,马俊杰 2,王静 3*
1.南京邮电大学通达学院 通信工程学院,江苏 扬州 225127;2.南京邮电大学通达学院 计算机工程学院,江苏 扬州225127;3.南京邮电大学通达学院 基础教学部,江苏 扬州 225127
High-precision Measurement of Thin Film Resistance Basedon LM Algorithm to Improve BP Neural Network
ZHANG Yu1, WANG Yan1,PENG Zhengfeng2, MA Junjie2, WANG Jing3*
School of Communication Engineering,'Tongda College of Nanjing University of Posts and Telecommunications, Yangzhou225127, China; 2. School of Computer Engineering, Tongda College of Nanjing tniversity of Posts and Telecommunications,Yangzhou 225127,China;3.Department ofBasie Edueation,Tongda College ofNanjing University of Posts andTelecommunications,Yangzhou 225127,China
下载:  PDF (2669KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

在半导体工艺中,电阻测量极其关键。传统四探针法在测量薄膜的电阻时,需对范德堡函数进行非线性拟合,不仅耗时较长,且精度较差。针对该现象提出了一种基于 Levenberg-Marquardt(LM)算法的 Backpropagation neural network(BPNN)神经网络模型。LM 算法结合了梯度下降法和牛顿法的优点,在迭代过程中快速接近全局最小值,且对于局部最小值的陷落情况优于纯梯度下降法,结合 BP 神经网络的反向传播误差来调整权重,从而实现复杂非线性函数的拟合。对含反双曲余弦的超越函数(范德堡函数)的局部参数进行非线性拟合,得到最大偏差为 2.08×10-5,相对标准偏差为 2.16×10-8的神经

网络拟合模型,对比规范化多项式拟合方法精度提升 99.5%。此改进方法,可极大提高测量结果的稳定性与精确性,将模型运用于实验测量过程,有效改善了电阻率测试精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张 钰
王 琰
彭正凤
马俊杰
王 静
关键词:  BP 神经网络  范德堡法  非线性函数拟合  电阻率测量  LM 算法     
Abstract: 

Resistance measurement is extremely critical in semiconduetor technology. When measuring theresistance of thin films by the traditional four-probe method, nonlinear fiting of the Van der Pauw function isrequired, which is not only time-consuming but also has poor accuracy,In view of this phenomenon, a Backpropagation neural network ( BPNN) neural network model based on the Levenberg-Marquardt (LM)algorithmis proposed. The IM algorithm combines the advantages of the gradient deseent method and the Newtonmethod, quickly approaches the global minimum during the iteration process, and is better than the puregradient descent method in the case of local minimum fall, The weight is adjusted by combining the backpropagation error of the BP neural network to achieve the fitting of complex nonlinear funetions, "The localparameters of the transeendental funetion ( Van der Pauw funetion) containing the inverse hyperbolie cosine arenonlinearly fitted, and a neural network fiuing model with a maximum deviation of 2.08x 109 and a relativestandard deviation of 2. 16 x 10-° is obtained. Compared with the normalized polynomial fitting method, theaccuraey is improved by 99.596.This improved method can greatly improve the stability and accuraey of themeasurement results."The model is applied to the experimental measurement process , which elfectively improvesthe resistivity test accuracy.

Key words:  back propagation neural network    Vanderbilt method    nonlinear function fitting    resistivity measurement    Levenberg Marquardt algorithm
               出版日期:  2025-04-25      发布日期:  2025-04-25      整期出版日期:  2025-04-25
ZTFLH:  TP 183  
基金资助: 

江苏省高等学校自然科学基金(20KJB140006);南京邮电大学通达学院大学生科技创新训练计划(202413989022Y)

引用本文:    
张 钰 , 王 琰, 彭正凤, 马俊杰, 王 静. 基于LM算法改进 BP 神经网络的薄膜电阻高精度测量 [J]. 大学物理实验, 2025, 38(2): 64-69.
ZHANG Yu, WANG Yan, PENG Zhengfeng, MA Junjie, WANG Jing. High-precision Measurement of Thin Film Resistance Basedon LM Algorithm to Improve BP Neural Network . Physical Experiment of College, 2025, 38(2): 64-69.
链接本文:  
https://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.en22-228.2025.02.012  或          https://dawushiyan.jlict.edu.cn/CN/Y2025/V38/I2/64
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed