Please wait a minute...
大学物理实验, 2022, 35(6): 26-30     https://doi.org/10.14139/j.cnki.cn22-1228.2022.06.005
  本期目录 | 过刊浏览 | 高级检索 |
放电系统谐振特性的研究
林靖松 1 ,齐宏松 1 ,于潭学 1,张昕 2 ,霍伟刚 1*
1.辽宁师范大学 物理与电子技术学院,辽宁 大连 116029;2.中国人民解放军南部战区总医院,广东 广州 510010
Study on the Discharge System Resonance Characteristics
LIN Jingsong 1 ,QI Hongsong 1 ,YU Tanxue 1 ,ZHANG Xin 2 ,HUO Weigang 1*
下载:  PDF (2677KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

许多介质阻挡放电系统存在谐振现象,影响电源输出效率,因此研究介质阻挡放电系统谐振很有意义。本文研究了平板电极体放电系统的谐振,发现:放电系统具有 LC 并联谐振特性;只有在放电处于丝状放电时,放电系统才会出现谐振;随着电极间隙的增加,谐振频率变大,谐振点对应电流值减小。氩气含量低于 30%时,氦氩混合气体放电的谐振消失。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林靖松
齐宏松
于潭学
张 昕
霍伟刚
关键词:  放电系统  谐振  放电模式  电极间隙     
Abstract: 

The dielectric barrier discharge system usually shows resonance phenomenon,which affects the output efficiency of power supply.Therefore,it is very meaningful to study the discharge system resonance.The resonance of volume discharge system composed of two panel electrodes was experimentally studied.The results show that the discharge system has LC parallel resonance characteristics;the discharge system resonates only when discharge operates in filament mode;the resonant frequency increases,and the resonant current decreases with the increase of electrode gap;When the content of argon is less than 30%,the oscillation disappears.

Key words:  discharge system    resonant    discharge mode    electrode gap
               出版日期:  2022-12-25      发布日期:  2022-12-25      整期出版日期:  2022-12-25
ZTFLH:  G 642.0  
引用本文:    
林靖松 , 齐宏松 , 于潭学 , 张 昕 , 霍伟刚 . 放电系统谐振特性的研究 [J]. 大学物理实验, 2022, 35(6): 26-30.
LIN Jingsong , QI Hongsong , YU Tanxue , ZHANG Xin , HUO Weigang . Study on the Discharge System Resonance Characteristics . Physical Experiment of College, 2022, 35(6): 26-30.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.14139/j.cnki.cn22-1228.2022.06.005  或          http://dawushiyan.jlict.edu.cn/CN/Y2022/V35/I6/26
[1] 赵文来, 杨俊秀, 陈秋妹. Python 在 RLC 串联谐振实验数据处理中的应用 [J]. 大学物理实验, 2022, 35(6): 85-90.
[2] 吕 亮 , 胡 俊, 张 耒. 基于多纵模自混合效应的激光器腔体温度测量实验教学研究 [J]. 大学物理实验, 2022, 35(5): 12-15.
[3] 纪 纬, 韩建卫, 钟 瑞, 王 拴, 张立彬. DIY磁耦合谐振式无线电力传输实验[J]. 大学物理实验, 2022, 35(2): 20-23.
[4] 曹显莹, 曲阳, 郭春来. 基于虚拟仪器的RLC谐振电路实验系统研究 [J]. 大学物理实验, 2019, 32(6): 96-99.
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed