Please wait a minute...
大学物理实验, 2022, 35(4): 85-89     https://doi.org/10.16039/j.cnki.cn22-1228.2022.04.018
  本期目录 | 过刊浏览 | 高级检索 |
物理实验温度模糊控制仪的设计
吴可秀1,郑琪1,李忠帅2,许凌云2*
1.南京航空航天大学 电子信息学院,江苏 南京 211100; 2.南京航空航天大学 物理学院,江苏 南京 211100
Design of Intelligent Temperature Controller for Physical Experiment
WU Kexiu,ZHENG Qi,LI Zhongshuai,XU Lingyun
下载:  PDF (1030KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

物理实验的温度控制对于实验结果起决定性影响。本文基于 STM32 单片机的智能温度模糊控制仪采用 DS18B20 温度传感器测量温度,使用智能液晶触控显示屏和语音合成模块实时显示,同时通过模糊 PID 控制算法,利用加热管和TEC 半导体制冷片实现对温度的动态调控。相比采用位式控制算法的传统控温仪器,智能温度控制仪控温精度更高,稳定性更强,响应速率更高,噪音更小,符合节能、环保的项目设计要求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴可秀
郑琪
李忠帅
许凌云
关键词:  STM32  DS18B20  模糊 PID 算法  智能温度控制     
Abstract: 

The temperature control in the laboratory plays a decisive role in the physical experimental results.Under the premise of low cost,the intelligent temperature controller improves the temperature control accuracy and stability of the temperature control of old laboratory equipment as much as possible.Based on STM32 single-chip microcomputer,the intelligent temperature controller uses DS18B20 temperature sensor to measure temperature,uses intelligent LCD touch screen and voice synthesis module to display,and at the same time uses fuzzy PID control algorithm,using heating tube and TEC semiconductor refrigeration chip to realize dynamic temperature control.Compared with the traditional temperature control instrument using the position control algorithm,the intelligent temperature controller has higher temperature control accuracy,stronger stability,higher response rate and lower noise,which meets the project design requirements of energy saving

and environmental protection.

Key words:  STM32    DS18B20    fuzzy PID algorithm    intelligent temperature control
               出版日期:  2022-08-25      发布日期:  2022-08-25      整期出版日期:  2022-08-25
ZTFLH:  TP 237+.4  
引用本文:    
吴可秀, 郑琪, 李忠帅, 许凌云. 物理实验温度模糊控制仪的设计 [J]. 大学物理实验, 2022, 35(4): 85-89.
WU Kexiu, ZHENG Qi, LI Zhongshuai, XU Lingyun. Design of Intelligent Temperature Controller for Physical Experiment . Physical Experiment of College, 2022, 35(4): 85-89.
链接本文:  
http://dawushiyan.jlict.edu.cn/CN/10.16039/j.cnki.cn22-1228.2022.04.018  或          http://dawushiyan.jlict.edu.cn/CN/Y2022/V35/I4/85
No related articles found!
[1] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[2] . [J]. Physical Experiment of College, 2020, 33(1): 0 .
[3] WU Ming, ZENG Hong, ZHANG Wenpeng, ZHANG Yuanwei, DAI Zhenbing. Theoretical and Experimental Research of A zimuthal-Radial Pendulum [J]. Physical Experiment of College, 2020, 33(1): 1 -6 .
[4] LIU Weiwei, SUN Qing, LIU Chenglin. Research on Selection of Critical Magnetization Current for Measuring Charge-Mass Ratio of Electron by Magnetron Controlling [J]. Physical Experiment of College, 2020, 33(1): 7 -9 .
[5] DENG Li, LIU Yang, ZHANG Hangzhong, ZHOU Kewei, ZHAO guoru, WEI luanyi. MATLAB simulation of Fourier transform of Gaussian beam and the spatial filtering effects basing on 4F optical imaging system [J]. Physical Experiment of College, 2020, 33(1): 10 -16 .
[6] MA Kun. Experiment Study on the Measuring Young' s Modulus by Stretching [J]. Physical Experiment of College, 2020, 33(1): 17 -20 .
[7] FEI Xianxiang, CHEN Chunlei, WANG Wenhua, SHI Wenqing, HUANG Cunyou. Design of Lens Group Focal Length Measurement System Based on Object-Image Parallax Comparison [J]. Physical Experiment of College, 2020, 33(1): 21 -24 .
[8] LI Chunjiang, LI Luyu, YANG Jinglei, LI Tingrong, XIANG Wenli. A New Method for Simple and Rapid Measurement of Refractive Index [J]. Physical Experiment of College, 2020, 33(1): 25 -28 .
[9] WANG Cuiping, YAO Mengyu, YE Liu, LI Aixia, ZHANG Ziyun, DAI Peng. Progress and Applications of Electron Spin Resonance in Biology [J]. Physical Experiment of College, 2020, 33(1): 29 -33 .
[10] CHEN Yingmo, SHEN Siyi, WANG Jie. Study on the Characteristics of Silicon Photocells [J]. Physical Experiment of College, 2020, 33(1): 34 -36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed